

14/0​​ ​ ​ ​ ​ ​ ​ ​ ​ ​

RAPPORT DE STAGE : TECHNICIEN
RÉSEAU
Auteurs : Pierre FAMCHON
Tuteur en entreprise : M. Wilfried Quet
Lieu : Université de Technologie de Compiègne
Sujet : Déploiement d’outils de discovery et d’inventory de réseaux (SoT)
Formation : R&T - 2ème Année
Durée : 8 semaines | 14/04 - 06/06
Année : 2024-2025

Une photo de la façade du Centre Pierre Guillaumat 1, UTC

Déploiements d’outils de découverte et d’inventaire de réseaux

Pierre Famchon

Sommaire

REMERCIEMENTS...3
INTRODUCTION ... 4
L’HISTOIRE DE L’ENTREPRISE... 5-9

1.​ LE FONDATEUR, GUY DENIELOU…………..…..…………………………………………………………...5
2.​ LA GENÈSE DE L'UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE…………..6-7
3.​ LA DIRECTION DES SYSTÈMES D’INFORMATION…………………………….……8-9

a.​ Histoire de la création
b.​ Organisation structurelle et les activités

MISSIONS..10
RÉALISATIONS... 11-42

1.​ NETBOX……….11-24
a.​ Découverte de l’outils Netbox
b.​ Déploiement de Netbox
c.​ Configuration de Netbox

2.​ NETDISCO………25-35
a.​ Découverte de l’outils Netdisco
b.​ Déploiement de Netdisco
c.​ Configuration de Netdisco
d.​ Cartographie de la topologie Réseau

3.​ INTEGRATION A NETBOX……………………………………………………………………………..36-42
a.​ Importation fichiers CSV
b.​ Automatisation avec scripts

CONCLUSION..43
BIBLIOGRAPHIE...44
GLOSSAIRE...45
ANNEXES...46

-​ Script python : d’intégration à Netbox en utilisant l’API
-​ Fichiers de configuration Netdisco

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​2

https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.7zvak2keihoo
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.fksb5hcdzprx
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.wisoh8r69epp
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv

Pierre Famchon

Remerciements

 Je souhaite remercier l’ensemble des personnes qui m’ont permis
d’obtenir ce stage ainsi que ceux qui m’ont assisté durant ces 2 mois au
sein de la Direction des Systèmes d’Information (DSI).

 Dans un premier temps, je remercie l’ensemble des intervenants présents
à l’Université Technologique de Compiègne, d’avoir pris le temps de me
conseiller et de moduler mon dossier de stage afin de commencer ce
stage le plus rapidement que possible.

 J’adresse mes plus grands remerciements à Monsieur Harry CLAISSE,
Directeur de la DSI, de m’avoir accueilli au sein de ses locaux..

Je souhaite exprimer mes remerciements à mon tuteur au sein de la DSI,
Monsieur Wilfried QUET, de m’avoir proposé ce stage, ses connaissances,
son temps et sa patience dans cette longue aventure.

Je remercie également Madame Patricia HUGOT et Monsieur Rémy HUET
pour leur patience, leur confiance et d’avoir consacré de leur temps à mes
différentes questions.

Je remercie également tous les membres du Service Système Réseaux
pour leurs explications, leur soutien et l’assistance qu’ils ont pu m’apporter
durant ce stage.

Enfin, je salue avec gratitude l’ensemble du personnel de la Direction des
Systèmes d’Information pour leur accueil chaleureux, leur aide ainsi que
leur générosité dans cette aventure.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​3

Pierre Famchon

Introduction

Dans un contexte de profonde transformation numérique, la Direction des
Systèmes d'Information (DSI) a récemment initié une phase cruciale de
renouveau de son infrastructure réseau. Cette démarche stratégique vise à
migrer vers un modèle plus robuste, vaste et sécurisé, afin de répondre aux
exigences croissantes en matière de performance, de fiabilité et de
protection des données.

Cependant, ce renouvellement a mis en lumière un défi majeur : l'absence
d'outils dédiés à la découverte et à l'inventaire précis du réseau. Avant cette
migration, la DSI ne disposait pas d'une "source de vérité" unique et
centralisée permettant d'inventorier et d'administrer de manière
exhaustive l'ensemble de ses composants, qu'ils soient matériels (baies,
switchs, bornes Wi-Fi, postes de travail, etc.) ou virtuels (adresses IP, VLAN,
VRF, tunnels, etc.).

Cette lacune a engendré un manque critique d'un inventaire complet,
fiable et vérifiable en temps réel de l'infrastructure réseau. Une telle
situation complexifie non seulement la gestion quotidienne et la
maintenance préventive, mais elle représente également un frein majeur à
l'optimisation des ressources et à la réactivité face aux incidents.

C'est dans ce contexte que s'inscrit ce rapport de stage. Il détaillera les
missions et réalisations effectuées pour pallier ce manque, notamment par
l'étude et la mise en place d'outils de supervision et d'inventaire tels que
Netbox et NetDisco, essentiels pour rétablir une visibilité complète et une
administration efficace de l'infrastructure réseau rénovée.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​4

Pierre Famchon

L’histoire de l’entreprise

 1. Le fondateur, Guy Deniélou

 Il existe que très peu d'informations sur l’enfance de Guy Deniélou. Pour
résumer, il est né le 14 juin 1923 à Toulon d’un lieutenant de vaisseau, Albert
Jean René DENIÉLOU. Il fit des études secondaires jusqu’à l’arrivée de la
guerre où il les interrompit pour s’engager dans la Marine.

Une photo en uniforme de marin est disponible ci-dessous, Figure 1. À la
suite de plusieurs péripéties, il effectua une formation complémentaire au
sein de l’École Polytechnique pour ensuite continuer à Science Po.

 Durant ces années dans l’armée, il effectua des études sur les sous-marins
à propulsion nucléaire. Ce n’est qu’en 1959 où Guy Deniélou fut recruté par
le Commissariat à l'énergie atomique et aux énergies alternatives, afin de
mener des études et de la conception sur les réacteurs nucléaires

 Figure 1 : Guy Deniélou en uniforme de marin,

 source : Ecole Navale / Espace tradition / Officiers célèbres

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​5

Pierre Famchon

 2. La genèse de l’Université de Technologie de Compiègne

Les années 1960 marquèrent les débuts d’une idée. En effet, le retard lié à
la technique en France fut important, dû à un certain mépris pour la
technologie, très peu reconnu à l’époque et empêchant également l’accès
à certains hauts postes. L’idée de la création d’une école focalisée sur les
sciences appliquées et de créer un nouveau type d’ingénieur naquit.

En 1972, il quitta le CEA pour fonder l’Université de Technologie de
Compiègne ainsi que le réseau de ces universités technologiques (« la
première pierre » du Centre Benjamin Franklin, Figure 2). Cette université
se veut être en étroite collaboration avec les industriels et participer aux
conseils scientifiques afin de définir les futures politiques scientifiques.

Sa localisation n’est également pas anodine. Dans un objectif de
réaménagement du territoire, l’Oise, en France, comme lieu pour ce
prototype universitaire fut choisie : énormément d’espace, proche mais
hors de la région parisienne, raccordée au réseau autoroutier et en lien
avec le futur aéroport Roissy Charles de Gaulle.

Figure 2 : Pose de la première pierre du Centre Benjamin Franklin,

source : Histoire de l'UTC - UTC

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​6

Pierre Famchon

Aujourd’hui, l'UTC propose diverses formations dans les domaines de
l'ingénierie : que ce soit dans l’informatique, la mécanique, la biologie ou
encore le civil par exemple. Elle offre également la possibilité d’obtenir un
double diplôme, qui est une valeur ajoutée vis-à-vis des autres universités.

D’un point de vue pédagogique, les étudiants sont libres de choisir les
cours qu’ils souhaitent suivre à hauteur de 300 cours divisés en plusieurs
catégories : Connaissances Scientifiques, Techniques et Méthodes et
Technologie et Sciences de l’Homme. Son approche pédagogique met
également l'accent sur les projets collaboratifs, les stages en entreprise et
l'internationalisation. L'école encourage aussi l'esprit entrepreneurial et la
prise d'initiative à travers les événements et les associations.

L'UTC fait partie du réseau des écoles du groupe des INSA (Instituts
Nationaux des Sciences Appliquées) ce qui lui permet d'avoir une très forte
influence et reconnaissance en France et à l'international (la carte des
affiliées, Figure 3).

Figure 3 : La liste et localisation des universités partenaires
 source : Mobilité sortante - UTC

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​7

Pierre Famchon

 3. La Direction des Systèmes d’Information

 a. Historique de la création

La Direction des Systèmes d’Information (ou communément appelée DSI)
a été créée le 1er janvier 2008 suivant les conseils du Ministère. L’ensemble
du personnel du support informatique a été regroupé au sein d’une seule
et unique entité nommée la DSI. Le Service Informatique et le Service
Informatique de Gestion, ainsi que tous les informaticiens des différents
départements, ont fusionné et ont été regroupés géographiquement afin
de créer la DSI.

 b. Organisation structurelle et les activités

La DSI, telle qu’on la connaît aujourd’hui, est composée de trois services :

• Service Assistance et Gestion de Parcs
• Service Système et Réseau
• Service Ingénierie des Applications

Évidemment, chaque service possède ses propres activités qui sont les
suivantes :

- Le Service Assistance et Gestion de Parcs est essentiellement constitué
de techniciens qui assurent :

o La gestion du parc informatique pédagogique
o La formation des utilisateurs (Word, Excel, Outlook, …)
o L’assistance aux utilisateurs (personnels et étudiants)
o L’installation / la configuration / le dépannage des postes du
personnel
o Un ensemble de projets annexes (CIL, carte multiservice,
photocopieurs, …)

- Le Service Système et Réseau, constitué d’ingénieurs et d’un technicien
qui assurent :

​ ​ o La sécurité informatique

o La téléphonie
o La gestion des systèmes et du réseau (local, métropolitain et
régional)

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​8

Pierre Famchon

- Le Service Ingénierie des Applications est constitué de 8 développeurs et
1 concepteur web design. Ce service assure tous les développements
autour du système d'information tel que :

​ o L'interface avec les utilisateurs

o Le développement d'applications spécifiques
o Les développements des nouvelles fonctionnalités du
Système d'Information
o La mise en place et la maintenance applicative des logiciels
de l'AMUE

J’ai effectué mon stage au sein du Service Système et Réseau, ou SR, en
compagnie de mon maître de stage, Monsieur Wilfried QUET. Un schéma
plus complet, concernant les activités de la DSI, est disponible en Annexe.
Enfin, voici l’organigramme ainsi que les personnes affiliées à la DSI :

Figure 4 : Organigramme de la DSI

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​9

Pierre Famchon

Missions

 Au cours de ce stage, mes missions principales se sont articulées autour
de l'étude, de la mise en place et du déploiement d'outils de supervision et
de monitoring des éléments d'infrastructure réseau. L'objectif était
d'améliorer la visibilité sur l'état du réseau, d'optimiser sa gestion et de
garantir la disponibilité des services.

Mes responsabilités ont notamment inclus :

●​ L'étude et la mise en place d'outils de supervision d'éléments
d'infrastructure : Cela a impliqué une recherche approfondie des
solutions existantes sur le marché, avec un focus particulier sur
Netbox et NetDisco. Cette phase a permis de comprendre leurs
fonctionnalités, leurs avantages et leurs limites, afin de déterminer
leur pertinence pour l'environnement réseau de l'entreprise.

●​ Le déploiement et la configuration de Netbox : J'ai été chargé de
l'installation de Netbox, un outil essentiel pour la gestion de
l'infrastructure réseau (IPAM et DCIM). Cette étape a nécessité la
configuration précise des différents modules, l'intégration des
équipements existants et la structuration des données pour une
représentation fidèle de l'infrastructure.

●​ Le déploiement et la configuration de NetDisco : J'ai également mis
en œuvre NetDisco, un outil complémentaire permettant la
découverte automatique des équipements réseau. Cette tâche a
impliqué la configuration des paramètres de découverte, la gestion
des identifiants et l'intégration des données collectées pour une
cartographie dynamique du réseau.

●​ La mise en place d'outils de monitoring sur les liens critiques de
l'infrastructure : Au-delà de la supervision globale, une attention
particulière a été portée à la surveillance des liens réseau vitaux. J'ai
configuré des systèmes de monitoring spécifiques pour ces liens,
permettant une détection proactive des problèmes et une réactivité
accrue en cas d'incident, contribuant ainsi à la stabilité et à la
performance de l'ensemble de l'infrastructure.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​10

Pierre Famchon

Réalisations

Au cours de mon stage, les principales réalisations ont porté sur l'étude, le
déploiement, la configuration et l'intégration de deux outils fondamentaux
pour la supervision et l'inventaire de l'infrastructure réseau : Netbox et
NetDisco. Ces implémentations ont été cruciales pour répondre au besoin
identifié d'une “source de vérité complète” et fiable pour les équipements
réseau de la DSI, notamment suite à une période de renouveau et de
migration vers une infrastructure plus robuste, vaste et sécurisée.

1. NETBOX

Netbox a été sélectionné comme l'outil central de gestion de
l'infrastructure réseau (IPAM et DCIM), essentiel pour inventorier et
administrer les équipements physiques et virtuels. Sa capacité à offrir une
vue d'ensemble détaillée et structurée de l'infrastructure en fait un pilier
de la gestion moderne des réseaux.

a. Découverte de l'outil Netbox

Netbox est une application web open-source de gestion d'adresses IP
(IPAM - IP Address Management) et de gestion de l'infrastructure de
centre de données (DCIM - Data Center Infrastructure Management).
Conçu spécifiquement pour répondre aux besoins des professionnels de
l'IT souhaitant documenter et modéliser leurs réseaux, il se distingue par sa
capacité à maintenir une "Source of Truth" fiable et centralisée pour
l'ensemble de l'infrastructure réseau.

Son architecture est basée sur le framework web Django (Python), ce qui
lui confère robustesse, extensibilité et une grande flexibilité. Les données
sont stockées dans une base de données PostgreSQL, réputée pour sa
fiabilité et sa performance dans la gestion de grands volumes de données
relationnelles. Netbox ne se limite pas à un simple inventaire statique ; il
permet de modéliser des relations complexes entre les différents
composants réseau, incluant :

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​11

Pierre Famchon

●​ Adresses IP et sous-réseaux (IPAM) : Gestion des préfixes, adresses
IP individuelles, VLANs, VRF (Virtual Routing and Forwarding) et
tunnels VPN. Cette fonctionnalité est cruciale pour éviter les conflits
d'adresses et pour une planification rigoureuse de l'adressage
réseau.

●​ Équipements physiques (DCIM) : Inventaire des baies, des
dispositifs (commutateurs, routeurs, serveurs, bornes Wi-Fi, pare-feu),
de leurs emplacements physiques, de leurs types, de leurs rôles et de
leurs connexions physiques et logiques (câblage, interfaces).

●​ Composants modulaires : Prise en charge des modules d'interfaces,
des alimentations électriques et d'autres composants internes des
équipements.

●​ Opérateurs et circuits : Documentation des circuits de données
fournis par des opérateurs externes.

●​ Virtualisation : Gestion des clusters, des machines virtuelles et de
leurs connexions réseau.

L'interface utilisateur de Netbox est intuitive et riche en fonctionnalités,
permettant des recherches rapides, des filtrages complexes et une
visualisation claire de la topologie. De plus, son API RESTful exhaustive
permet une automatisation poussée des tâches d'inventaire et
d'administration, ce qui est un avantage considérable dans les
environnements dynamiques comme celui de la DSI.

Contexte de la DSI : Pour la DSI, l'adoption de Netbox est une réponse
directe à l'absence d'un inventaire complet et fiable après la migration des
équipements. Sans une vision claire de l'infrastructure matérielle (baies,
switchs, bornes Wi-Fi, PC) et virtuelle (IP, VLAN, VRF, tunnels), la gestion, le
dépannage et la planification des évolutions étaient devenus
particulièrement complexes. Netbox a été identifié comme l'outil capable
de centraliser ces informations et de servir de référence unique pour tous
les intervenants, garantissant ainsi une meilleure cohérence des données
et une efficacité accrue des opérations.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​12

Pierre Famchon

b. Déploiement de Netbox

Le déploiement de Netbox a été réalisé en utilisant la technologie des
conteneurs Docker et l'outil d'orchestration Docker Compose. Ce choix
technique a été motivé par plusieurs avantages significatifs :

●​ Isolation de l'environnement : Docker permet d'encapsuler
l'application Netbox et toutes ses dépendances (base de données
PostgreSQL, Redis pour le cache) dans des conteneurs isolés, évitant
ainsi les conflits avec d'autres applications ou librairies présentes sur
le système hôte.

●​ Portabilité et reproductibilité : Les configurations Docker Compose
garantissent que l'environnement de Netbox peut être déployé de
manière identique sur n'importe quel serveur compatible Docker,
facilitant la reproductibilité de l'installation et les futurs transferts ou
mises à jour.

●​ Facilité de gestion : Docker Compose simplifie la gestion de
l'ensemble des services nécessaires à Netbox (base de données,
application web, worker, etc.) via un seul fichier de configuration
(docker-compose.yml) et des commandes unifiées.

●​ Rapidité de déploiement : L'utilisation de conteneurs pré-configurés
réduit considérablement le temps et la complexité de l'installation
par rapport à un déploiement manuel de chaque composant.

Voici les étapes détaillées du processus de déploiement :

Mise à jour des paquets système et installation des prérequis Docker :
Avant toute installation, il est impératif de s'assurer que le système
d'exploitation est à jour pour bénéficier des dernières corrections de
sécurité et des dépendances logicielles.​
​
sudo apt update
sudo apt install -y ca-certificates curl gnupg lsb-release

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​13

Pierre Famchon

Ces commandes mettent à jour la liste des paquets disponibles et
installent les outils nécessaires pour gérer les certificats SSL, télécharger
des fichiers (curl), gérer les clés GPG et identifier la version de la
distribution Linux.​
​

 Ensuite, la clé GPG officielle de Docker a été ajoutée au trousseau de clés
du système. Cette étape est cruciale pour que le gestionnaire de paquets
APT puisse vérifier l'authenticité des paquets Docker et s'assurer qu'ils
proviennent d'une source fiable.​
​
sudo mkdir -p /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo
gpg --dearmor -o /etc/apt/keyrings/docker.gpg

Le dépôt Docker officiel a été ajouté à la liste des sources APT. Cela permet
au système de savoir où trouver les paquets Docker à installer.

La commande lsb_release -cs insère dynamiquement le nom de code
de la distribution Ubuntu (stable dans ce cas), assurant que le bon dépôt
est utilisé.​
​
echo "deb [arch=$(dpkg --print-architecture)
signed-by=/etc/apt/keyrings/docker.gpg]
https://download.docker.com/linux/ubuntu $(lsb_release -cs)
stable" | sudo tee /etc/apt/sources.list.d/docker.list >
/dev/null

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​14

Pierre Famchon

1.​ Installation de Docker Engine et Docker Compose Plugin :

Une fois le dépôt ajouté, les paquets Docker Engine (docker-ce,
docker-ce-cli, containerd.io) et le plugin Docker Compose (v2) ont été
installés.​
​
sudo apt update

sudo apt install -y docker-ce docker-ce-cli containerd.io
docker-compose-plugin

○​ docker-ce est le moteur Docker de la communauté.
○​ docker-ce-cli est l'outil en ligne de commande pour interagir

avec Docker.
○​ containerd.io est un runtime de conteneurs de haut niveau.
○​ docker-compose-plugin est la version v2 de Docker Compose,

intégrée en tant que plugin Docker, simplifiant son utilisation
(docker compose au lieu de docker-compose).

2.​ Démarrage et activation du service Docker :

Après l'installation, le service Docker a été démarré et configuré pour se
lancer automatiquement au démarrage du système.​
​
sudo systemctl start docker
sudo systemctl enable docker

Ceci assure que Docker est opérationnel et persistant après un
redémarrage du serveur.​

3.​ Récupération des fichiers de Netbox Docker :

Les configurations Docker Compose pour Netbox sont fournies par la
communauté via un dépôt GitHub. Le dépôt a été cloné et le répertoire de
travail a été défini sur ce nouveau dossier.​

git clone https://github.com/netbox-community/netbox-docker.git
cd netbox-docker

Il est à noter qu'il est possible de spécifier une version précise de Netbox à
utiliser en modifiant le fichier .env ou en le créant s'il n'existe pas, par

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​15

Pierre Famchon

exemple echo "VERSION=v4.2.3" > .env. Cela garantit la stabilité et la
reproductibilité des déploiements.

4.​ Lancement des conteneurs Netbox avec Docker Compose :

Les images Docker nécessaires pour Netbox (application, base de données,
Redis, etc.) ont été téléchargées, puis les conteneurs ont été démarrés en
mode détaché (-d).​
​
sudo docker compose pull
sudo docker compose up -d

 docker compose pull télécharge les images les plus récentes spécifiées
dans le docker-compose.yml. docker compose up -d démarre tous les
services définis dans le fichier docker-compose.yml en arrière-plan.​
​
 Pour vérifier le bon fonctionnement des conteneurs et accéder à leurs logs
en cas de problème, les commandes suivantes ont été utilisées :
sudo docker compose ps
sudo docker compose logs netbox

docker compose ps liste les conteneurs et leur statut. docker compose
logs netbox affiche les logs du conteneur spécifique de l'application
Netbox.

5.​ Exposition du port web de Netbox :

Par défaut, l'image Docker de Netbox n'expose pas directement son port
web (8080 interne au conteneur) à l'hôte. Pour rendre l'interface web
accessible depuis l'extérieur du serveur, une modification a été apportée
au fichier docker-compose.override.yml. Ce fichier permet de surcharger
les configurations du docker-compose.yml principal sans le modifier
directement.​
​
nano docker-compose.override.yml

Le contenu suivant a été ajouté ou modifié pour mapper le port 8000 de
l'hôte au port 8080 du conteneur netbox:

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​16

Pierre Famchon

​

 Après cette modification, les conteneurs ont été relancés pour appliquer
les changements :​
​
sudo docker compose down
sudo docker compose up -d

docker compose down arrête et supprime les conteneurs existants, et
docker compose up -d les recrée avec la nouvelle configuration de port.

6.​ Accès à l'interface web et création d'un superutilisateur :

Une fois le port exposé, l'interface web de Netbox est devenue accessible
via un navigateur web en utilisant l'adresse IP du serveur et le port 8000
(ex: http://192.168.100.160:8000).​
​
 Pour la première connexion, il est nécessaire de créer un superutilisateur
(administrateur). Ceci se fait en accédant au shell du conteneur Netbox et
en exécutant une commande Django :​
​
sudo docker exec -it netbox-docker-netbox-1 bash
python3 /opt/netbox/netbox/manage.py createsuperuser

 Il a été demandé de fournir un nom d'utilisateur (ex: admin) et un mot de
passe (Progtr00). L'adresse email est un champ facultatif.​
​
 Pour des raisons de sécurité, le mot de passe de l'utilisateur admin a été
réinitialisé après la création initiale pour s'assurer qu'il soit fort et ne soit
pas un mot de passe par défaut connu :​
 ​
python3 /opt/netbox/netbox/manage.py changepassword admin

 Enfin, un redémarrage des conteneurs Netbox a été effectué pour
s'assurer que toutes les configurations soient bien prises en compte:​

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​17

Pierre Famchon

​
sudo docker compose restart

Accès à la page de connexion

7.​ Génération du token :

Une fois connecté avec le superutilisateur, il a été possible de générer un
token d'API Netbox.

Ce token est essentiel pour permettre à des scripts externes (comme ceux
développés pour l'importation de données) d'interagir de manière
sécurisée avec l'API RESTful de Netbox.

Ce token, par exemple 04946ef59ffeb57bc7a0e7c6ac73f787eb272c57, sera
utilisé dans la configuration des scripts d'automatisation.​
​ ​ ​ ​ Page d'accueil de Netbox :

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​18

Pierre Famchon

c. Configuration de Netbox

La phase de configuration de Netbox a été axée sur la préparation de
l'importation massive et automatisée des données de l'infrastructure
réseau. L'objectif était de structurer un processus permettant de peupler
Netbox avec des informations complètes et précises, en minimisant les
interventions manuelles et en garantissant la cohérence des données.

1.​ Arborescence des fichiers du dépôt Netbox Docker :

Avant de commencer la configuration, une analyse de l'arborescence des
fichiers clonés du dépôt netbox-docker a été effectuée. Cela a permis de
comprendre l'organisation du projet, les fichiers de configuration
importants (configuration.py, docker-compose.yml,
docker-compose.override.yml), les scripts (docker-entrypoint.sh), et les
répertoires d'environnement (env). Cette compréhension est fondamentale
pour toute modification ou personnalisation future. L'outil tree -a a été
utilisé pour visualiser cette arborescence.

2.​ Création des répertoires pour l'importation des fichiers :

Afin d'organiser les scripts d'automatisation et les fichiers de données, une
nouvelle structure de répertoires a été mise en place, distincte du
répertoire netbox-docker. Le répertoire netbox-device-autodiscovery a
été créé, avec un sous-répertoire import_yaml pour les scripts et un
sous-répertoire network_devices pour les fichiers de données YAML.​
​
mkdir netbox-device-autodiscovery/import_yaml
cd netbox-device-autodiscovery
mkdir network_devices

Cette organisation permet de maintenir une séparation claire entre les
configurations officielles de Netbox et les scripts développés
spécifiquement pour l'entreprise, facilitant la gestion des versions et les
mises à jour.​

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​19

Pierre Famchon

3.​ Découpage des données réseau en fichiers YAML structurés :

Le fichier network_devices.yaml initial, qui contenait l'inventaire des
équipements (obsolète mais constituant la base de mon backend), a été
découpé en plusieurs sous-fichiers YAML, organisés par type
d'équipement. Cette granularité simplifie grandement l'exécution des
scripts d'importation, car elle permet de traiter des catégories spécifiques
d'équipements et de minimiser les erreurs. L'arborescence résultante
ressemble à ceci:​
​
 - network_devices/
 ├── access-points/
 │ ├── ap-bf.yaml
 │ ├── ap-cima.yaml
 │ └── ...
 ├── captive-portals/
 │ └── captive_portals.yaml
 ├── radius/
 │ └── radius.yaml
 ├── switches/
 │ ├── sw-5000.yaml
 │ ├── sw-bf.yaml
 │ └── ...
 ├── vpn-servers/
 │ └── vpn_servers.yaml
 └── wlc/
 └── wlc.yaml

Chaque fichier YAML contient la description d'un ou plusieurs
équipements de même type, avec leurs propriétés (nom, type, adresse IP,
adresse MAC, rôle, ports, description, etc.). Ce format structuré est essentiel
pour que les scripts Python puissent interpréter correctement les données
et les mapper aux objets correspondants dans Netbox.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​20

Pierre Famchon

4.​ Développement des scripts Python pour l'interaction avec
l'API Netbox :

Un ensemble de scripts Python a été développé pour automatiser le
processus d'importation des données YAML dans Netbox via son API
RESTful. Ces scripts sont situés dans le répertoire import_yaml.

Ce répertoire contient :

├── network_devices​ ​ # répertoire contenant les .yaml
├── __pycache__​​ ​
│
├── main.py
├── device_manager.py
├── netbox_api.py
├── netbox_config.py
└── yaml_processor.py

Automatisation possible de Netbox

source : https://netboxlabs.com

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​21

Pierre Famchon

main.py : C'est le point d'entrée principal pour l'exécution du processus
d'importation. Il est responsable de définir le chemin d'accès au fichier
YAML que yaml_processor.py doit utiliser.​
​
import os
from yaml_processor import load_and_process_yaml # Importation
correcte de ton module

def main():
​ # Chemin relatif du fichier YAML dans le sous-dossier
network_devices
​ yaml_path = "network_devices/access-points/ap-rob.yaml"
​ print("🚀 Démarrage de l'importation des équipements vers
NetBox...")
​ load_and_process_yaml(yaml_path) # Appel de la fonction de
traitement
​ print("✅ Importation terminée.")

if __name__ == "__main__":
​ main()

 Ce script permet de lancer le processus pour un fichier YAML spécifique,
facilitant le débogage et l'importation sélective.

device_manager.py : Ce module est central pour la gestion des
équipements et de leurs interfaces dans Netbox. Il contient des fonctions
pour :

-​ get_interface_id_by_name(device_id, interface_name) :

Récupère l'ID d'une interface spécifique pour un périphérique
donné, en interrogeant l'API Netbox.

-​ device_exists(device_name) :

Vérifie si un équipement avec un nom donné existe déjà dans
Netbox. Cette fonction est cruciale pour déterminer si une opération
de création ou de mise à jour est nécessaire.

-​ create_or_update_device(payload, existing_device=None) :

Créer un nouvel équipement ou met à jour un équipement existant
dans Netbox. Cette fonction prend en charge le "payload" (les

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​22

http://main.py

Pierre Famchon

données de l'équipement) et gère la logique de création (POST) ou de
mise à jour (PATCH) en fonction de l'existence de l'équipement. Les
codes de statut HTTP (200, 201, 204) sont vérifiés pour confirmer le
succès de l'opération.

-​ get_device_type_id(device_type_name) :

 Récupère l'ID du type de périphérique correspondant au nom fourni
(ex: "cisco-switch").

-​ get_site_id(site_name) :

Récupère l'ID du site (emplacement physique) dans Netbox.

-​ create_interfaces(device_id, port_list, mgmt_only) :

Créer les interfaces pour un équipement donné. Il vérifie d'abord si
l'interface existe déjà ; si ce n'est pas le cas, il la crée avec un type par
défaut (par exemple, "1000base-t") et la propriété mgmt_only
(interface de gestion uniquement). Les IDs des interfaces créées ou
récupérées sont stockées.

-​ assign_mac_to_interface(interface_id, mac_address) :

 Assigne une adresse MAC à une interface spécifique. La fonction
gère la création de l'adresse MAC si elle n'existe pas et son
association à l'interface, ou la mise à jour si l'adresse MAC existe mais
n'est pas encore assignée. Une fonction utilitaire
format_mac_address assure que l'adresse MAC est au bon format
(XX:XX:XX:XX:XX:XX).

-​ assign_ip_to_device(device_id, ip_address) :

Assigne une adresse IP à la première interface trouvée pour un
équipement donné (ou crée l'adresse IP si elle n'existe pas).

netbox_api.py : Ce module regroupe des fonctions utilitaires pour
simplifier les interactions récurrentes avec l'API Netbox, fournissant des
méthodes pour récupérer les IDs de différents objets Netbox. Il utilise les
configurations de netbox_config.py.​

-​ get_device_type_id(device_type_name) :

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​23

Pierre Famchon

Récupère l'ID d'un type de périphérique par son modèle.

-​ device_exists(device_name) :

Vérifie si un périphérique existe par son nom, retournant l'objet
périphérique si trouvé.

-​ get_device_role() :

Récupère l'ID d'un rôle de périphérique (ex: "Wi-Fi AP").

-​ get_site_id(site_name) :

Récupère l'ID d'un site par son nom.

-​ create_or_update_device(device_payload,
existing_device=None) :

Une version plus générique pour créer ou mettre à jour un
périphérique, incluant l'assignation du rôle.

-​ get_device_role_id(role_name) :

Récupère l'ID d'un rôle de périphérique générique.

netbox_config.py : Ce fichier centralise les paramètres de connexion à
l'API Netbox, rendant les autres scripts indépendants de ces valeurs et
facilitant leur mise à jour.​

NETBOX_URL = "http://192.168.100.160:8000/api/"
NETBOX_TOKEN = "04946ef59ffeb57bc7a0e7c6ac73f787eb272c57"

HEADERS = {
​ "Authorization": f"Token {NETBOX_TOKEN}",
​ "Content-Type": "application/json",
}
DEBUG_MODE = True

yaml_processor.py : C'est le module principal qui orchestre le processus
d'importation. Il charge le fichier YAML, itère sur chaque équipement défini
et appelle les fonctions appropriées de device_manager.py et

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​24

Pierre Famchon

netbox_api.py pour créer ou mettre à jour les équipements, leurs
interfaces, adresses IP et MAC dans Netbox.

La fonction load_and_process_yaml(file_path) est le cœur de ce module.
Elle lit le fichier YAML, extrait les informations pour chaque périphérique
(nom, type, IP, MAC, rôle, ports), formate les adresses MAC si nécessaire,
récupère les IDs des types de périphériques, rôles et sites, puis appelle
create_or_update_device pour gérer l'équipement lui-même. Ensuite, elle
traite la liste des ports pour créer les interfaces (y compris la gestion des
plages de ports G0/1-24) et assigne les adresses IP et MAC aux interfaces
correspondantes.​

élévation de Baie de la DSI, réalisé suite à mon référencement de ces
dernières

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​25

Pierre Famchon

2. NETDISCO

NetDisco a été intégré en complément de Netbox pour sa capacité à
découvrir automatiquement les équipements réseau et à collecter des
informations détaillées via des protocoles comme SNMP. Il joue un rôle
crucial en alimentant Netbox avec des données dynamiques et à jour,
garantissant que l'inventaire reste pertinent au fil des évolutions de
l'infrastructure.

a. Découverte de l'outil Netdisco

NetDisco est une application open-source basée sur Perl, conçue pour la
découverte, l'inventaire et la cartographie des réseaux informatiques. Il se
positionne comme un outil d'audit et de monitoring passif, capable
d'interroger les équipements réseau (commutateurs, routeurs, pare-feu,
points d'accès) pour récupérer des informations précieuses sur leur
configuration, leurs interfaces, leurs tables de routage, leurs MAC-adresses,
et leurs connexions physiques (via CDP, LLDP, FDP).

Les fonctionnalités clés de NetDisco incluent :

●​ Découverte automatique (Discovery) : NetDisco peut scanner des
plages d'adresses IP ou des sous-réseaux pour identifier les
équipements actifs. Il utilise principalement le protocole SNMP
(Simple Network Management Protocol) pour interroger les
dispositifs, mais peut également s'appuyer sur d'autres méthodes
pour identifier les connexions et les propriétés des équipements.

●​ Collecte de données (Collect) : Une fois un équipement découvert,
NetDisco collecte une quantité significative de données :

○​ Informations système (nom d'hôte, modèle, numéro de série,
version du firmware).

○​ Interfaces (nom, type, statut, vitesse, adresses MAC).
○​ Tables de pontage (MAC-adresse / port).
○​ Tables ARP (adresse IP / MAC-adresse).
○​ Informations VLAN.
○​ Détails sur les ports PoE.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​26

Pierre Famchon

●​ Cartographie de la topologie (Topology Mapping) : En utilisant les
informations de protocole de découverte de voisins (CDP pour Cisco,
LLDP pour des équipements multi-constructeurs), NetDisco peut
établir une carte des interconnexions entre les équipements réseau,
offrant une visualisation graphique de la topologie.

●​ Inventaire et recherche : Toutes les données collectées sont
stockées dans une base de données (généralement PostgreSQL),
permettant des recherches rapides et la génération de rapports
détaillés sur l'état du réseau.

●​ Alertes : Bien que moins orienté monitoring temps réel que d'autres
outils, NetDisco peut générer des alertes sur des changements d'état
ou des découvertes d'équipements non autorisés.

Contexte de la DSI : Dans le cadre du renouvellement de l'infrastructure,
l'intégration de NetDisco répond au besoin urgent d'une découverte
automatisée et continue des équipements réseau. La DSI se trouvait sans
un inventaire complet et à jour en temps réel. NetDisco permet de
combler cette lacune en scannant le réseau pour identifier tous les
nouveaux équipements ou les changements sur les équipements
existants. Ses données seront ensuite exploitées pour maintenir Netbox à
jour, assurant ainsi la fiabilité de la "source de vérité" de l'infrastructure.
L'automatisation de la découverte réduit considérablement la charge de
travail manuelle et garantit que l'inventaire dans Netbox reflète toujours la
réalité du terrain.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​27

Pierre Famchon

b. Déploiement de Netdisco

Le déploiement de NetDisco, à l'instar de Netbox, a été réalisé en utilisant
Docker et Docker Compose. Cette approche garantit la même isolation,
portabilité et facilité de gestion pour l'environnement NetDisco, qui se
compose de plusieurs services (application web, backend de découverte,
base de données PostgreSQL).

Les étapes détaillées du déploiement sont les suivantes :

1.​ Récupération des fichiers NetDisco Docker :

La première étape consiste à récupérer les configurations Docker Compose
de NetDisco depuis son dépôt GitHub officiel.​
​
git clone https://github.com/netdisco/netdisco.git
cd netdisco

Cette commande télécharge l'intégralité du projet NetDisco, y compris les
fichiers Docker Compose et les configurations par défaut.​

2.​ Création des répertoires et ajustement des permissions :

NetDisco nécessite des répertoires spécifiques pour stocker ses logs et sa
configuration locale, et ces répertoires doivent avoir des permissions
d'écriture pour l'utilisateur sous lequel NetDisco s'exécute dans le
conteneur (généralement l'UID 901).​
​
mkdir logs config nd-site-local
chmod 777 logs config nd-site-local

-​ logs : Pour les fichiers de log de l'application NetDisco.
-​ config : Pour les fichiers de configuration de NetDisco (comme

deployment.yml).
-​ nd-site-local : Pour les personnalisations spécifiques au site ou les

plugins.
-​ chmod 777 : est une permission temporaire très permissive. Pour un

environnement de production, il faudrait affiner ces permissions
pour qu'elles soient moins ouvertes, par exemple en attribuant la
propriété au groupe de l'utilisateur NetDisco ou en utilisant des ACLs
plus granulaires une fois l'UID de l'utilisateur Docker connu.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​28

Pierre Famchon

Cependant, pour une installation rapide et un environnement de
stage, cela permet de s'assurer qu'il n'y a pas de problème de
permission bloquant.

3.​ Installation et Lancement initial de Docker Compose :

Une fois les répertoires préparés, les images Docker de NetDisco sont
téléchargées et les conteneurs sont lancés.​
​
docker compose pull
docker compose up -d

-​ docker compose pull : Télécharge les images Docker nécessaires
pour tous les services définis dans le docker-compose.yml de
NetDisco (par exemple, netdisco/netdisco, postgres).

-​ docker compose up -d : Démarre tous les services en arrière-plan.
Cela inclut le conteneur de la base de données PostgreSQL, le
backend de NetDisco (pour la découverte), le service web et d'autres
services auxiliaires.

4.​ Configuration des fichiers Docker Compose et NetDisco :

La configuration est une étape cruciale pour adapter NetDisco à
l'environnement réseau spécifique de la DSI.

Modification de docker-compose.yml : Bien que le docker-compose.yml par
défaut soit fonctionnel, il a pu nécessiter des ajustements pour des
mappings de ports spécifiques, des volumes persistants ou des
configurations réseau avancées si l'intégration avec d'autres outils (comme
Netbox sur un autre conteneur) l'exigeait.

Pour NetDisco, il est crucial que les services (web, backend, db) puissent
communiquer entre eux. Le fichier par défaut est généralement bien
configuré pour cela.

Configuration de deployment.yml : Ce fichier est le cœur de la
configuration de NetDisco. Il se trouve dans le répertoire
netdisco/netdisco/config (ou mappé dans ./config sur l'hôte).​

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​29

Pierre Famchon

deployment.yml - Configuration Netdisco

database:
 name: 'netdisco'
 user: 'netdisco'
 pass: 'netdisco'
 #host: 'netdisco-postgresql'
 port: 5432

domain_suffix: 'localdomain'
site_name: 'Réseau SNMP'

Clé de session requise pour Netdisco Web
#session_cookie_key:
'd43b52e4f1d44f39b681db9494a7d2cf0fc2e2a9a79be30fc2d4039e037f47b2
'
device_auth:
 - tag: 'snmpv3'
​ user: stagiaire
​ auth:
 ​ pass: nJS9cq5TFwWnQs
 ​ proto: SHA
​ priv:
 ​ pass: DHGC5uxBGBpn4d
 ​ proto: AES

Pas d’authentification (utilisateur guest en admin)
no_auth: true

Détection automatique
discover_no:
 - '127.0.0.1'

 Les paramètres clés à configurer incluent :

-​ db : Les informations de connexion à la base de données
PostgreSQL. Dans un environnement Docker Compose, host=db
signifie que le service backend de NetDisco se connecte au service db
via le nom de service Docker Compose.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​30

Pierre Famchon

-​ site : Des informations générales sur le déploiement de NetDisco
(nom, logo, etc.).

-​ discovery : C'est la section la plus importante. Elle contient les
informations nécessaires à NetDisco pour interroger les
équipements réseau :

-​ default_community : Les communautés SNMPv2c à essayer.
-​ snmp_versions : Les versions de SNMP à utiliser (ici 2c et 3).
-​ snmpv3 : La configuration détaillée pour les identifiants SNMPv3

(nom d'utilisateur, protocoles d'authentification et de confidentialité,
et leurs phrases secrètes).

5.​ Redémarrage et mise à jour de la Base de Données
NetDisco :

Après toute modification de deployment.yml ou docker-compose.yml, les
conteneurs doivent être redémarrés pour que les changements soient pris
en compte.​
​
sudo docker compose restart

 Il est parfois nécessaire de redémarrer spécifiquement le conteneur
netdisco-web si des problèmes de connexion à la base de données
persistent, pour s'assurer qu'il recharge bien sa configuration.​
​
 Enfin, le schéma de la base de données de NetDisco doit être créé ou mis
à jour.​

sudo docker exec -it netdisco-backend bin/netdisco-db-deploy

Cette commande exécute le script netdisco-db-deploy à l'intérieur du
conteneur netdisco-backend. Ce script crée toutes les tables nécessaires,
les vues et les fonctions dans la base de données PostgreSQL pour que
NetDisco puisse stocker ses données. Après l'exécution réussie, il est
recommandé de redémarrer à nouveau les services netdisco-web et
netdisco-backend pour s'assurer qu'ils utilisent le schéma de base de
données à jour.​
​
sudo docker compose restart netdisco-web netdisco-backend

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​31

Pierre Famchon

c. Configuration

La configuration de NetDisco a été validée par une série de tests rigoureux,
s'assurant de sa capacité à interagir correctement avec les équipements
réseau de la DSI et à collecter des informations fiables.

1.​ Tests de connectivité inter-conteneurs et applicative :

Il est primordial de s'assurer que les différents composants de l'application
NetDisco peuvent communiquer entre eux, ainsi qu'avec les ressources
externes (les équipements réseau).

Résolution DNS interne des conteneurs : Un test a été effectué pour vérifier
que le conteneur netdisco-backend pouvait résoudre le nom d'hôte de la
base de données.​
​
sudo docker exec -it netdisco-backend ping netdisco-postgresql

○​ Un ping réussi vers db (le service PostgreSQL) confirme que la
résolution DNS interne fonctionne correctement.​

○​ Si des erreurs de connexion (utilisateur/mot de passe
incorrects, base de données non trouvée) apparaissent, elles
sont généralement visibles dans les logs du conteneur
netdisco-backend.

Accessibilité IP depuis le conteneur backend : Pour que NetDisco puisse
découvrir les équipements réseau, le conteneur netdisco-backend doit
avoir une connectivité réseau vers le réseau de la DSI.​
​
sudo docker exec -it netdisco-backend ping 172.20.0.42
 # Exemple d'IP d'un équipement réseau de la DSI

○​ Un ping réussi indique que le routage et les règles de pare-feu
entre le conteneur Docker et le réseau interne sont
correctement configurés. C'est une étape fondamentale avant
toute tentative de découverte SNMP.​

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​32

Pierre Famchon

2.​ Test SNMPv3 dans le conteneur du backend :

La découverte de NetDisco repose fortement sur SNMP. Un test direct
depuis le conteneur netdisco-backend a été effectué pour valider que les
identifiants SNMPv3 configurés (stagiaire, phrases secrètes SHA et AES)
permettaient bien d'interroger un équipement cible.

Installation des outils SNMP dans le conteneur : Par défaut, les outils de
ligne de commande SNMP (comme snmpwalk) peuvent ne pas être
installés dans l'image Docker de NetDisco. Pour les besoins de test, ils ont
été installés temporairement.​
​
sudo docker exec -u root -it netdisco-backend sh
apk update
apk add net-tools net-snmp

○​ apk update met à jour la liste des paquets Alpine Linux (la
base de l'image Docker NetDisco). apk add net-tools
net-snmp installe les outils réseau classiques et la suite d'outils
SNMP.

Exécution de snmpwalk : Une fois les outils installés, un snmpwalk direct a
été exécuté pour vérifier l'authentification et le chiffrement SNMPv3.​
​
sudo docker exec -it netdisco-backend snmpwalk -v3 -u stagiaire
-l authPriv -a SHA -A nJS9cq5TFwWnQs -x AES -X DHGC5uxBGBpn4d
172.20.0.42

-v3 : Spécifie la version SNMP 3.

-u stagiaire : Le nom d'utilisateur SNMPv3.

-l authPriv : Indique que l'authentification et la confidentialité
(chiffrement) sont utilisées.

-a SHA -A nJS9cq5TFwWnQs : Protocole d'authentification SHA et sa phrase
secrète.

-x AES -X DHGC5uxBGBpn4d : Protocole de confidentialité AES et sa phrase
secrète.

172.20.0.42 : L'adresse IP de l'équipement réseau cible (un switch, routeur,
etc.).

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​33

Pierre Famchon

Un résultat affichant des OID SNMP et leurs valeurs (par exemple, des
informations sur le système ou les interfaces) a confirmé que les
paramètres SNMPv3 étaient corrects et que NetDisco serait en mesure
d'interroger cet équipement. Une erreur ici aurait indiqué un problème
d'identifiants, de protocole ou de configuration SNMP sur l'équipement
lui-même.​

3.​ Test de découverte réseau détaillée (mode debug avancé) :

Le test ultime de la configuration de NetDisco est l'exécution d'une
découverte complète sur un équipement cible en mode débogage avancé.
Cela permet de vérifier le bon fonctionnement de l'outil et d'observer les
logs détaillés de chaque étape du processus de découverte.​
​
sudo docker exec -it netdisco-backend bin/netdisco-do discover
-DDDD -d 172.20.0.42

○​ bin/netdisco-do discover : La commande NetDisco pour
lancer une découverte.

○​ -DDDD : Active le niveau de débogage le plus élevé, fournissant
des informations très granulaires sur les étapes de la
découverte (tentatives SNMP, requêtes MIB, traitement des
réponses).

○​ -d 172.20.0.42 : Spécifie l'équipement cible par son adresse
IP.

L'analyse des logs générés par cette commande a permis de :​

-​ Confirmer que NetDisco a pu établir une session SNMPv3 avec
l'équipement.

-​ Vérifier que les MIBs nécessaires ont été interrogées et que des
données significatives ont été retournées (informations système,
interfaces, tables MAC, etc.).

-​ Identifier d'éventuels problèmes de parsing de données ou de
compatibilité avec des équipements spécifiques.

-​ Observer la progression de la découverte, y compris les tentatives de
détection de voisins via CDP/LLDP.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​34

Pierre Famchon

d. Cartographie de la topologie Réseau

Carte du réseau de la DSI obtenue grâce à netdisco

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​35

Pierre Famchon

4.​ Gestion des Logs et Erreurs (non nuisibles) :

Au cours du déploiement et des tests, l'observation des logs des
conteneurs est essentielle.

Accès aux logs globaux :​
​
sudo docker compose logs -f -t

Cette commande permet de suivre en temps réel (-f) les logs de tous les
services Docker Compose, avec un horodatage (-t). Cela a été utile pour
détecter les problèmes au démarrage des conteneurs ou lors des
premières tentatives de découverte.

Erreurs "DB unversioned" et "session_cookie_key" : certaines erreurs ou
avertissements peuvent apparaître dans les logs mais ne sont pas
nécessairement nuisibles.

●​ DBIx::Class::Schema::Versioned::_on_connect(): Your DB is
currently unversioned. Please call upgrade on your schema to
sync the DB. Cette erreur indique que la base de données n'a pas
été "versionnée" ou que son schéma n'est pas à jour. Cependant, si le
script netdisco-db-deploy a été exécuté avec succès, cette erreur
peut parfois apparaître de manière transitoire ou être un
avertissement résiduel, indiquant qu'une mise à jour de schéma a
déjà été effectuée ou qu'une vérification de version est requise à
chaque connexion sans impacter le fonctionnement. Dans ce cas,
elle a été identifiée comme non bloquante.

●​ Demande d’une clé... session_cookie_key Cet avertissement
concerne une clé secrète utilisée pour chiffrer les cookies de session
de l'application web. Si cette clé n'est pas définie explicitement dans
la configuration, NetDisco en génère une de manière aléatoire au
démarrage, mais un avertissement peut apparaître. Pour un
environnement de production, il est recommandé de générer une
clé unique et de la spécifier dans le fichier de configuration
(deployment.yml) pour assurer la persistance des sessions et
renforcer la sécurité. Dans le cadre du stage, cet avertissement a été
considéré comme non critique pour la fonctionnalité de découverte.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​36

Pierre Famchon

3. INTEGRATION A NETBOX

a. Importation fichiers CSV

L'objectif de cette étape est de transférer les informations brutes et
vérifiées de l'infrastructure, collectées par NetDisco et stockées dans sa
base de données PostgreSQL, vers Netbox. L'utilisation de fichiers CSV est
privilégiée pour les importations massives ou lorsque l'on souhaite un
contrôle granulaire sur les données avant leur injection.

Le processus se déroule en plusieurs étapes clés :

Accès à la base de données PostgreSQL de NetDisco :

La première action consiste à se connecter au shell de la base de données
PostgreSQL qui est conteneurisée avec NetDisco.​
​
sudo docker exec -it netdisco-postgresql psql -U netdisco
netdisco

sudo docker exec -it netdisco-postgresql : Cette commande
permet d'exécuter une commande à l'intérieur du conteneur Docker
nommé netdisco-postgresql (qui héberge la base de données de
NetDisco)

psql : C'est le client en ligne de commande de PostgreSQL.

-U netdisco : Spécifie l'utilisateur de la base de données à utiliser, ici
netdisco.

netdisco : Le nom de la base de données à laquelle se connecter,
également netdisco par convention.

Une fois cette commande exécutée, l'utilisateur est connecté à la console
psql et peut interagir directement avec la base de données NetDisco.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​37

Pierre Famchon

Extraction des données des équipements vers un fichier CSV :

Dans la console psql, la commande \copy est utilisée pour exporter les
résultats d'une requête SQL directement vers un fichier sur le système de
fichiers du conteneur. Cette commande est plus puissante et plus rapide
que COPY pour les transferts vers des fichiers locaux.​
​
 Exemple 1 : Extraction des périphériques avec leur :

-​ nom
-​ fabricant
-​ serial
-​ model
-​ rôle Netbox
-​ status
-​ site

\copy (SELECT d.name AS name, d.serial AS serial, d.vendor AS
manufacturer, d.model AS model, CASE WHEN d.layers = '00000100'
THEN 'Router' WHEN d.layers = '00000010' THEN 'Switch' WHEN
d.layers = '00001000' THEN 'AP' ELSE 'Other' END AS device_role,
'active' AS status, 'SiteInconnu' AS site FROM device d) TO
'/tmp/netdisco_devices.csv' WITH (FORMAT CSV, HEADER);

SELECT ... FROM device d : Sélectionne des colonnes de la table
device de NetDisco, qui contient les informations sur les
équipements découverts.

d.name AS name : Le nom de l'équipement.

d.serial AS serial : Le numéro de série de l'équipement.

d.vendor AS manufacturer, d.model AS model : Le fabricant et le
modèle de l'équipement.

CASE WHEN d.layers = '00000100' THEN 'Router' WHEN d.layers
= '00000010' THEN 'Switch' WHEN d.layers = '00001000' THEN
'AP' ELSE 'Other' END AS device_role : Cette clause CASE est
cruciale. Elle mappe la valeur binaire d.layers (qui représente les
couches OSI de l'équipement dans NetDisco) à un device_role
lisible pour Netbox. Par exemple, '00000010' (couche 2) est traduit en
'Switch', '00000100' (couche 3) en 'Router', et '00001000' (couche 4)

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​38

Pierre Famchon

en 'AP'. Cette transformation est indispensable car Netbox utilise des
rôles sémantiques.

'active' AS status : Assigne un statut 'active' par défaut à tous les
équipements exportés. Ce statut est compatible avec Netbox.

'SiteInconnu' AS site : Assigne un site par défaut 'SiteInconnu'. Il
est important de noter que ce site doit exister préalablement dans
Netbox, ou les équipements devront être réassignés manuellement
après l'importation.

TO '/tmp/netdisco_devices.csv' : Spécifie le chemin du fichier CSV
où les données seront écrites à l'intérieur du conteneur NetDisco. Le
répertoire /tmp/ est souvent utilisé pour des fichiers temporaires.

WITH (FORMAT CSV, HEADER) : Ces options indiquent que le format
de sortie doit être CSV et qu'une ligne d'en-tête (avec les noms de
colonnes) doit être incluse.

Exemple 2 : Extraction des ip périphériques avec

-​ ip
-​ masque
-​ status
-​ dns
-​ interface

​
\copy (SELECT HOST(d_ip.ip)::text || '/' || MASKLEN(d_ip.subnet)
AS address, 'active' AS status, d_ip.dns AS dns_name, d.dns AS
device_name, d_ip.port AS interface_name, 'true' AS is_primary,
'false' AS is_oob FROM device_ip d_ip JOIN device d ON d_ip.ip =
d.ip WHERE d_ip.ip IS NOT NULL AND d_ip.port IS NOT NULL) TO
'/tmp/ip.csv' WITH (FORMAT CSV, HEADER);

Cette deuxième requête SQL a pour objectif d'extraire des informations
détaillées sur les adresses IP et les interfaces réseau depuis la base de
données de NetDisco, afin de les exporter dans un fichier CSV. Ce fichier
peut ensuite être utilisé pour importer ces données dans un autre système,
comme Netbox, pour enrichir son inventaire d'adresses IP.​

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​39

Pierre Famchon

Récupération du fichier CSV depuis le conteneur :

Une fois le fichier CSV généré à l'intérieur du conteneur
(/tmp/netdisco_devices.csv), il doit être copié sur le système hôte pour
être accessible par les scripts Python d'importation dans Netbox. La
commande docker cp est utilisée à cet effet :​
​
sudo docker cp netdisco-postgresql:/tmp/netdisco_devices.csv

Cette commande copie le fichier netdisco_devices.csv depuis le
répertoire /tmp/ du conteneur netdisco-postgresql vers le répertoire
courant (.) sur le système hôte.

Le fichier est maintenant prêt à être intégré à Netbox grace a l’interface
web proposant une option d’importation : soit fichier par fichier dans cet
ordre précis :

1.​ Sites :
-​ Regions.csv
-​ Sites.csv
-​ Locations.csv
2.​ Fabricants :
-​ Manufacturers.csv
3.​ Types d’appareils et de modules :
-​ DeviceTypes.yaml
-​ ModuleTypes.yaml
4.​ Racks :
-​ Racks.csv
5.​ Appareils :
-​ Devices.csv
6.​ Composants d'appareils :
-​ Interfaces.csv
-​ ConsolePorts.csv
-​ PowerPorts.csv
-​ FrontPorts.csv
-​ RearPorts.csv
-​ DeviceBays.csv
-​ InventoryItems.csv
7.​ Modules :
-​ Modules.csv
8.​ Adresses IP :

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​40

Pierre Famchon

-​ IPAddresses.csv
-​ Prefixes.csv
-​ VLANs.csv
9.​ Câblage :
-​ Câbles.csv

b. Automatisation avec scripts pour l'intégration à Netbox

Le fichier CSV ainsi obtenu devient la source de données pour les scripts
Python précédemment développés, qui sont chargés d'interagir avec l'API
RESTful de Netbox. Ce processus combine la puissance de découverte de
NetDisco avec la capacité de gestion de Netbox et la flexibilité de
l'automatisation Python.

Traitement du fichier CSV par les scripts Python : Le script
yaml_processor.py (ou un script similaire adapté au format CSV) lira le
fichier netdisco_devices.csv. Pour chaque ligne du CSV (représentant un
équipement), le script extraira les informations : name, primary_ip4, serial,
manufacturer, model, device_role (ou role et device_type), status, et
site.​

Mapping des données et interaction avec l'API Netbox :​

●​ Récupération des IDs d'objets Netbox :

Avant de créer ou mettre à jour un équipement, les scripts utiliseront
les fonctions de netbox_api.py pour récupérer les IDs numériques
des objets Netbox correspondants :

get_device_type_id() : Pour le modèle de l'équipement (ex:
"WS-C2960-24TT-L").

get_device_role_id() : Pour le rôle de l'équipement (ex: "Switch",
"Router", "AP").

get_site_id() : Pour le site géographique (ex: "SiteInconnu"). Ces
étapes sont cruciales car l'API Netbox attend des IDs numériques
pour relier les objets.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​41

Pierre Famchon

●​ Création ou mise à jour des équipements (device_manager.py) :

Pour chaque ligne du CSV, le script vérifiera si un équipement avec le
même nom (ou numéro de série) existe déjà dans Netbox en
utilisant device_exists().

Si l'équipement n'existe pas, une requête POST sera envoyée à l'API
/api/dcim/devices/ pour créer un nouvel équipement avec toutes
les propriétés extraites du CSV (nom, rôle, type, site, statut, numéro
de série).

Si l'équipement existe déjà, une requête PATCH sera utilisée pour
mettre à jour ses propriétés, garantissant ainsi que l'inventaire
Netbox est synchronisé avec les dernières découvertes de NetDisco
sans créer de doublons.

●​ Gestion des interfaces et des adresses IP/MAC :

Bien que l'extraction CSV ci-dessus se concentre sur les informations
de base des équipements, une extension des scripts pourrait
également traiter les interfaces et les adresses IP/MAC. Les requêtes
\copy pourraient être adaptées pour exporter les tables d'interfaces
et d'adresses de NetDisco, puis les scripts Python seraient enrichis
pour créer ou mettre à jour les objets Interface et IPAddress dans
Netbox, en les liant aux Device correspondants. Les fonctions
comme create_interfaces(), assign_mac_to_interface(), et
assign_ip_to_device() de device_manager.py seraient appelées
pour ces opérations.

Exemple de flux de données et d'automatisation :

1.​ Découverte NetDisco : NetDisco scanne le réseau de la DSI et stocke
les informations brutes dans sa BDD PostgreSQL.

2.​ Extraction CSV : Les commandes \copy sont exécutées pour extraire
les données pertinentes et formatées dans un fichier CSV.

3.​ Transfert du CSV : Le fichier CSV est copié du conteneur NetDisco
vers l'environnement où les scripts Python s'exécutent
(potentiellement le même hôte que Netbox, ou un autre serveur de
gestion).

4.​ Importation par script : Le script Python lit le CSV, traite les données
ligne par ligne, effectue les mappings nécessaires et utilise l'API
Netbox pour créer ou mettre à jour les équipements.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​42

Pierre Famchon

Avantages de cette approche :

●​ Contrôle précis : Permet de filtrer, transformer et valider les données
de NetDisco avant leur importation dans Netbox, assurant une
meilleure qualité d'inventaire.

●​ Importation rapide : Pour de grands volumes d'équipements,
l'importation par CSV est beaucoup plus rapide que l'ajout manuel.

●​ Flexibilité : Les requêtes SQL et les scripts Python peuvent être
adaptés pour extraire et formater n'importe quelle donnée présente
dans NetDisco, et l'injecter dans n'importe quel champ de Netbox.

●​ Auditabilité : Le processus est scripté et reproductible, ce qui facilite
le débogage et l'audit des données importées.

●​ Bridge entre outils : Cette méthode crée un lien efficace entre un
outil de découverte dynamique (NetDisco) et un système de "Source
of Truth" structuré (Netbox).

Cette synergie entre NetDisco et Netbox, orchestrée par des scripts Python
et des extractions SQL, a permis de transformer un inventaire manquant
en un système d'information réseau centralisé, fiable et à jour pour la DSI.

Intégration des données de NetDisco dans NetBox complété

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​43

Pierre Famchon

Conclusion

Ce stage a représenté une opportunité significative de contribuer à la
modernisation de l'infrastructure réseau de la DSI, en répondant à un
besoin crucial : l'établissement d'une source de vérité fiable et en temps
réel pour la gestion de ses équipements. L'absence d'outils d'inventaire et
de découverte, exacerbée par la migration vers une infrastructure plus
robuste, a souligné l'importance capitale d'une cartographie précise et
dynamique du réseau.

La mise en œuvre de Netbox et NetDisco a été au cœur de cette
démarche. Le déploiement et la configuration de Netbox ont permis de
structurer les données d'infrastructure matérielle et virtuelle, transformant
ainsi un inventaire fragmenté en une base de données centralisée et
interrogeable. Parallèlement, l'intégration de NetDisco a automatisé la
découverte des équipements, offrant une visibilité continue sur les
évolutions du réseau et garantissant la pertinence des informations
enregistrées dans Netbox. L'automatisation via des scripts a également
démontré le potentiel d'optimisation des tâches d'intégration, libérant du
temps pour des activités à plus forte valeur ajoutée.

Au-delà des aspects techniques, ce stage m'a permis de développer une
compréhension approfondie des enjeux liés à la gestion d'une
infrastructure réseau complexe. J'ai acquis une expérience précieuse dans
la planification, le déploiement et la configuration d'outils de supervision,
ainsi que dans la résolution des défis inhérents à ces projets. L'autonomie
et l'adaptabilité ont été des compétences clés renforcées tout au long de
cette période.

En définitive, les solutions mises en place constituent une avancée
majeure pour la DSI. Elles fournissent désormais les bases d'une gestion
proactive et éclairée de l'infrastructure réseau, permettant une
meilleure compréhension des interdépendances, une détection plus
rapide des anomalies et une prise de décision plus pertinente. Ces outils
sont un pilier essentiel pour accompagner la DSI dans ses futures
évolutions et maintenir la performance d'un réseau en constante mutation.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​44

Pierre Famchon

Bibliographie

Présentation de l’entreprise
Officiers et anciens élèves - Albert Jean René DENIÉLOU. (s.d.).
Récupéré sur Ecole Nav Traditions:
http://ecole.nav.traditions.free.fr/officiers_denielou_albert.htm

Officiers et anciens élèves - Guy DENIÉLOU. (s.d.).
Récupéré sur Ecole Nav Traditions:
http://ecole.nav.traditions.free.fr/officiers_denielou_guy.htm

NetBox
NetBox Community. (n.d.). Installation Guide. NetBox Documentation.
https://docs.netbox.dev/en/stable/installation/

Netbox dépôt d’installation officiel
https://github.com/netbox-community

Docker
Docker. (n.d.). Install Docker Engine on Ubuntu. Docker Documentation.
https://docs.docker.com/engine/install/ubuntu/

Docker dépôt d’installation officiel
https://download.docker.com

NetDisco
NetDisco. (n.d.). NetDisco Deployment. NetDisco Documentation.
https://www.netdisco.org/doc/Deployment.html

NetDisco documentation
https://blog.pascal-mietlicki.fr/administration-reseau-simplifiez-la-gestion-
de-votre-infrastructure-avec-netdisco/

NetDisco documentation
https://metacpan.org/pod/App::Netdisco

NetDisco dépôt d’installation officiel
https://github.com/netdisco/netdisco

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​45

http://ecole.nav.traditions.free.fr/officiers_denielou_albert.htm
http://ecole.nav.traditions.free.fr/officiers_denielou_guy.htm
https://docs.netbox.dev/en/stable/installation/
https://docs.netbox.dev/en/stable/installation/
https://github.com/netbox-community
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://download.docker.com
https://www.google.com/search?q=https://www.netdisco.org/doc/Deployment.html
https://www.google.com/search?q=https://www.netdisco.org/doc/Deployment.html
https://blog.pascal-mietlicki.fr/administration-reseau-simplifiez-la-gestion-de-votre-infrastructure-avec-netdisco/
https://blog.pascal-mietlicki.fr/administration-reseau-simplifiez-la-gestion-de-votre-infrastructure-avec-netdisco/
https://metacpan.org/pod/App::Netdisco
https://github.com/netdisco/netdisco

Pierre Famchon

Glossaire

DSI : Direction des Systèmes d’Information

PDF : Portable Document Format, il s’agit d’une norme ISO décrivant la
structure d’un document. Il se veut portable sur différents systèmes sans
modifier la structure d’un document.

CEA : Commissariat à l'énergie atomique et aux énergies alternatives, il
s’agit d’une institution scientifique majeure travaillant sur les énergies bas
carbones, le numérique, la médecine et la défense. UTC : Université de
Technologie de Compiègne

ENT : Environnement Numérique de Travail

SGBD : Système de Gestion de Base de Données, il s’agit du logiciel qui
permet de gérer une base de données.

SQL : Structured Query Language, il s’agit d’un langage permettant de
communiquer avec une base de données.

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​46

Pierre Famchon

Annexes

Script Python : intégration Netbox en utilisant l’API

main.py : Donne le chemin d’accès au fichier yaml à utiliser par
yaml_procesor.py

import os
from yaml_processor import load_and_process_yaml #
Importation correcte de ton module

def main():
​ # Chemin relatif du fichier YAML dans le sous-dossier
network_devices
​ yaml_path = "network_devices/access-points/ap-rob.yaml"
​ print("🚀 Démarrage de l'importation des équipements vers
NetBox...")
​ load_and_process_yaml(yaml_path) # Appel de la fonction
de traitement
​ print("✅ Importation terminée.")

if __name__ == "__main__":
​ main()

device_manager.py : Gère la création, la mise à jour des
équipements, et la création des interfaces sur NetBox.​

import requests
from netbox_config import DEBUG_MODE
from icecream import ic

if not DEBUG_MODE:
​ ic.disable()

from netbox_config import NETBOX_URL, HEADERS
from utils import format_slug

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​47

Pierre Famchon

Fonction pour récupérer l'ID d'une interface par son nom
def get_interface_id_by_name(device_id, interface_name):
​ """
​ Récupère l'ID de l'interface par son nom pour un
périphérique donné.
​ """
​ response =
requests.get(f"{NETBOX_URL}dcim/interfaces/?device_id={device_
id}&name={interface_name}", headers=HEADERS)
​ if response.status_code == 200 and
response.json()["count"] > 0:
 ​return response.json()["results"][0]["id"]
​ return None

def device_exists(device_name):
​ response =
requests.get(f"{NETBOX_URL}dcim/devices/?name={device_name}",
headers=HEADERS)
​ if response.status_code == 200 and
response.json()["count"] > 0:
 ​return response.json()["results"][0]
​ return None

def create_or_update_device(payload, existing_device=None):
​ if existing_device:
 ​device_id = existing_device["id"]
 ​response =
requests.patch(f"{NETBOX_URL}dcim/devices/{device_id}/",
headers=HEADERS, json=payload)
 ​if response.status_code in (200, 204):
 ​ print(f"✅ Équipement mis à jour :
{payload['name']}")
 ​ return device_id
 ​else:
 ​ print(f"❌ Échec mise à jour {payload['name']} :
{response.status_code}")
 ​ return None
​ else:

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​48

Pierre Famchon

 ​response = requests.post(f"{NETBOX_URL}dcim/devices/",
headers=HEADERS, json=payload)
 ​if response.status_code == 201:
 ​ print(f"✅ Équipement créé : {payload['name']}")
 ​ return response.json()["id"]
 ​else:
 ​ print(f"❌ Échec création {payload['name']} :
{response.status_code}")
 ​ return None

def get_device_type_id(device_type_name):
​ if not device_type_name:
 ​return None
​ slug = format_slug(device_type_name)
​ response =
requests.get(f"{NETBOX_URL}dcim/device-types/?slug={slug}",
headers=HEADERS)
​ if response.status_code == 200 and
response.json()["count"] > 0:
 ​return response.json()["results"][0]["id"]

def get_site_id(site_name):
​ if not site_name:
 ​return None
​ response =
requests.get(f"{NETBOX_URL}dcim/sites/?name={site_name}",
headers=HEADERS)
​ if response.status_code == 200 and
response.json()["count"] > 0:
 ​return response.json()["results"][0]["id"]

def get_interface_id_by_name(device_id, interface_name):
​ response =
requests.get(f"{NETBOX_URL}dcim/interfaces/?device_id={device_
id}&name={interface_name}", headers=HEADERS)
​ if response.status_code == 200 and
response.json()["count"] > 0:
 ​return response.json()["results"][0]["id"]

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​49

Pierre Famchon

def create_interfaces(device_id, port_list, mgmt_only):
​ interface_ids = {}

​ for port_name in port_list:
 ​# Vérifie si l'interface existe déjà
 ​response = requests.get(
 ​ f"{NETBOX_URL}dcim/interfaces/",
 ​ headers=HEADERS,
 ​ params={"device_id": device_id, "name": port_name}
 ​)
 ​results = response.json().get("results", [])
 ​if results:
 ​ interface_id = results[0]["id"]
 ​ ic(f"🔁 Interface existante récupérée : {port_name}
-> {interface_id}")
 ​else:
 ​ # Crée l'interface
 ​ payload = {
 ​ "device": device_id,
 ​ "name": port_name,
 ​ "type": "1000base-t", # ou autre si nécessaire
 ​ "mgmt_only": mgmt_only or False,
 ​ }
 ​ response =
requests.post(f"{NETBOX_URL}dcim/interfaces/",
headers=HEADERS, json=payload)
 ​ response.raise_for_status()
 ​ interface_id = response.json()["id"]
 ​ ic(f"🆕 Interface créée : {port_name} ->
{interface_id}")

 ​interface_ids[port_name] = interface_id

​ return interface_ids

def assign_mac_to_interface(interface_id, mac_address):
​ import requests

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​50

Pierre Famchon

​ url = f"{NETBOX_URL}/dcim/mac-addresses/"

​ # Vérifier si la MAC existe déjà
​ existing = requests.get(url, headers=HEADERS,
params={"mac_address": mac_address}).json()

​ if existing["count"] > 0:
 ​# Si elle existe, mettre à jour avec l'interface si non
assignée
 ​mac_entry = existing["results"][0]
 ​if mac_entry.get("interface") is None:
 ​ update_url = f"{url}{mac_entry['id']}/"
 ​ response = requests.patch(update_url,
headers=HEADERS, json={"interface": interface_id})
 ​ if response.status_code in [200, 204]:
 ​ print(f"✅ MAC {mac_address} assignée à
l'interface {interface_id}")
 ​ else:
 ​ print(f"❌ Erreur lors de l'assignation de la
MAC à l'interface : {response.text}")
 ​else:
 ​ print(f"⚠️ Adresse MAC {mac_address} déjà associée à
une interface.")
​ else:
 ​# Créer la MAC avec l'interface directement
 ​payload = {
 ​ "mac_address": mac_address,
 ​ "interface": interface_id,
 ​}
 ​response = requests.post(url, headers=HEADERS,
json=payload)
 ​if response.status_code in [200, 201]:
 ​ print(f"✅ MAC {mac_address} créée et assignée à
l'interface {interface_id}")
 ​else:
 ​ print(f"❌ Erreur lors de la création de la MAC :
{response.text}")

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​51

Pierre Famchon

def format_mac_address(mac_address):
​ mac = mac_address.replace(".", "").replace("-",
"").replace(":", "").strip().upper()
​ if len(mac) != 12:
 ​print(f"❌ Adresse MAC invalide : {mac_address}")
 ​return None
​ return ":".join([mac[i:i+2] for i in range(0, 12, 2)])

def assign_ip_to_device(device_id, ip_address):
​ response =
requests.get(f"{NETBOX_URL}ipam/ip-addresses/?address={ip_addr
ess}", headers=HEADERS)
​ if response.status_code == 200 and
response.json()["count"] > 0:
 ​ip_id = response.json()["results"][0]["id"]
​ else:
 ​payload = {"address": ip_address}
 ​response =
requests.post(f"{NETBOX_URL}ipam/ip-addresses/",
headers=HEADERS, json=payload)
 ​if response.status_code == 201:
 ​ ip_id = response.json()["id"]
 ​else:
 ​ print(f"❌ Erreur ajout IP {ip_address}:
{response.status_code}")
 ​ return None

​ interface_response =
requests.get(f"{NETBOX_URL}dcim/interfaces/?device_id={device_
id}", headers=HEADERS)
​ if interface_response.status_code == 200 and
interface_response.json()["count"] > 0:
 ​interface_id =
interface_response.json()["results"][0]["id"]
​ else:

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​52

Pierre Famchon

 ​print(f"❌ Pas d’interface trouvée pour device
{device_id}")
 ​return None

​ payload = {"assigned_object_type": "dcim.interface",
"assigned_object_id": interface_id}
​ assign_response =
requests.patch(f"{NETBOX_URL}ipam/ip-addresses/{ip_id}/",
headers=HEADERS, json=payload)

​ if assign_response.status_code in (200, 204):
 ​print(f"✅ Adresse IP {ip_address} assignée à l’interface
{interface_id}")
 ​return interface_id
​ else:
 ​print(f"❌ Erreur assignation IP {ip_address}:
{assign_response.status_code}")
 ​return None

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​53

Pierre Famchon

netbox_api.py : Contient des fonctions utilitaires pour interagir avec
l'API de NetBox, telles que la récupération de l'ID du type de
périphérique, du rôle, du site, etc.​

import requests
import json
from netbox_config import DEBUG_MODE
from icecream import ic

if not DEBUG_MODE:
​ ic.disable()

from netbox_config import NETBOX_URL, HEADERS

Fonction pour récupérer l'ID d'un type de périphérique par
son nom (ex: "cisco-switch")
def get_device_type_id(device_type_name):
​ response = requests.get(
 ​
f"{NETBOX_URL}dcim/device-types/?model={device_type_name}",
 ​headers=HEADERS
​)
​ if response.status_code == 200:
 ​device_types = response.json()['results']
 ​ic(device_types)
 ​if device_types:
 ​ return device_types[0]['id']
​ print(f"❌ Erreur: type de périphérique introuvable :
{device_type_name}")
​ return None

Vérifie si un périphérique existe déjà par son nom
def device_exists(device_name):
​ response = requests.get(
 ​f"{NETBOX_URL}dcim/devices/?name={device_name}",
 ​headers=HEADERS
​)

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​54

Pierre Famchon

​ if response.status_code == 200:
 ​devices = response.json()['results']
 ​if devices:
 ​ return devices[0]
​ return None

Récupère l'ID du rôle "Switch"
def get_device_role():
​ role_name = "Wi-Fi AP"
​ response = requests.get(
 ​f"{NETBOX_URL}dcim/device-roles/?name={role_name}",
 ​headers=HEADERS
​)
​ if response.status_code == 200:
 ​roles = response.json()['results']
 ​if roles:
 ​ return roles[0]['id']
​ print(f"❌ Erreur: rôle '{role_name}' introuvable dans
NetBox.")
​ return None

Récupère l'ID du site à partir de son nom (description dans
YAML)
def get_site_id(site_name):
​ if not site_name:
 ​return None
​ response = requests.get(
 ​f"{NETBOX_URL}dcim/sites/?name={site_name}",
 ​headers=HEADERS
​)
​ if response.status_code == 200 and
response.json()["count"] > 0:
 ​return response.json()["results"][0]["id"]
​ else:
 ​print(f"🏷️ Site '{site_name}' non trouvé dans NetBox.")
 ​return None

Crée ou met à jour un périphérique avec le rôle bon role

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​55

Pierre Famchon

def create_or_update_device(device_payload,
existing_device=None):
​ device_role_id = get_device_role()
​ if not device_role_id:
 ​print("❌ Rôle 'VPN' introuvable, arrêt.")
 ​return None

​ # On ajoute bien le rôle ici, AVANT de sortir de la
fonction
​ device_payload['role'] = device_role_id

​ if existing_device:
 ​device_id = existing_device["id"]
 ​response = requests.patch(
 ​ f"{NETBOX_URL}dcim/devices/{device_id}/",
 ​ headers=HEADERS,
 ​ data=json.dumps(device_payload)
 ​)
 ​if response.status_code == 200:
 ​ print(f"✅ Équipement mis à jour :
{device_payload['name']}")
 ​ return device_id
 ​else:
 ​ print(f"❌ Erreur MAJ {device_payload['name']}:
{response.status_code} - {response.text}")
 ​ return None
​ else:
 ​response = requests.post(
 ​ f"{NETBOX_URL}dcim/devices/",
 ​ headers=HEADERS,
 ​ data=json.dumps(device_payload)
 ​)
 ​if response.status_code == 201:
 ​ print(f"✅ Équipement créé :
{device_payload['name']}")
 ​ return response.json()['id']
 ​else:

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​56

Pierre Famchon

 ​ print(f"❌ Erreur création {device_payload['name']}:
{response.status_code} - {response.text}")
 ​ return None

Récupère l'ID d'un rôle de périphérique par son nom
(générique)
def get_device_role_id(role_name):
​ response = requests.get(
 ​f"{NETBOX_URL}dcim/device-roles/?name={role_name}",
 ​headers=HEADERS
​)
​ if response.status_code == 200:
 ​roles = response.json().get("results", [])
 ​if roles:
 ​ return roles[0]["id"]
​ print(f"❌ Rôle '{role_name}' introuvable dans NetBox.")
​ return None

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​57

Pierre Famchon

netbox_config.py : Autorise la connexion à l’API netox, grace à son IP
et à son Token

NETBOX_URL = "http://192.168.100.160:8000/api/"
NETBOX_TOKEN = "04946ef59ffeb57bc7a0e7c6ac73f787eb272c57"

HEADERS = {
​ "Authorization": f"Token {NETBOX_TOKEN}",
​ "Content-Type": "application/json",
}
DEBUG_MODE = True

yaml_processor.py : Le module principal pour charger le fichier
YAML, créer ou mettre à jour les équipements dans NetBox, et gérer
les interfaces, les IPs, et autres paramètres.

import yaml
from netbox_config import DEBUG_MODE
from icecream import ic

if not DEBUG_MODE:
​ ic.disable()

from netbox_api import (
​ get_device_type_id,
​ get_device_role,
​ device_exists,
​ create_or_update_device,
​ get_site_id,
)
from device_manager import create_interfaces,
assign_ip_to_device, assign_mac_to_interface
from utils import format_mac

def load_and_process_yaml(file_path):
​ ic(file_path)
​ with open(file_path, 'r') as file:

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​58

Pierre Famchon

 ​data = yaml.safe_load(file)

​ for device_name, device_info in data.items():
 ​ic(device_name, device_info)

 ​device_type_name = device_info.get("type")
 ​ip_address = device_info.get("ip_address")
 ​mac_address = device_info.get("mac_address")
 ​role_name = device_info.get("role")
 ​raw_ports = device_info.get("ports")

 ​if mac_address:
 ​ mac_address = format_mac(mac_address)

 ​device_type_id = get_device_type_id(device_type_name)

 ​device_role_id = None
 ​if role_name:
 ​ device_role_id = get_device_role(role_name)

 ​existing_device = device_exists(device_name)

 ​device_payload = {
 ​ "name": device_name,
 ​ "device_type": device_type_id,
 ​ "site": get_site_id("Roberval"),
 ​}

 ​if device_role_id:
 ​ device_payload["device_role"] = device_role_id

 ​if "description" in device_info:
 ​ device_payload["description"] =
device_info["description"]

 ​device_id = create_or_update_device(device_payload,
existing_device)

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​59

Pierre Famchon

 ​port_list = []
 ​if raw_ports:
 ​ for part in raw_ports.split(","):
 ​ part = part.strip()
 ​ if "-" in part:
 ​ base = part[:part.index("/") + 1]
 ​ range_part = part.split("/")[1]
 ​ start, end = map(int,
range_part.split("-"))
 ​ for i in range(start, end + 1):
 ​ port_list.append(f"{base}{i}")
 ​ else:
 ​ port_list.append(part)

 ​# Crée les interfaces ET récupère les IDs
 ​interface_map = {}
 ​if port_list:
 ​ interface_map = create_interfaces(device_id,
port_list, None)

 ​# Assigne l'IP
 ​if ip_address:
 ​ interface_id = assign_ip_to_device(device_id,
ip_address)

 ​ # Utilise l'interface IP aussi pour la MAC
(optionnel)
 ​ if interface_id and mac_address:
 ​ assign_mac_to_interface(interface_id,
mac_address)

 ​# Sinon, assigne la MAC à G0/1 par défaut si dispo
 ​elif mac_address and "G0/1" in interface_map:
 ​ assign_mac_to_interface(interface_map["G0/1"],
mac_address)

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​60

Pierre Famchon

Fichier de Configuration Netdisco

docker-compose.yml :

services:
 netdisco-postgresql:
​ image: netdisco/netdisco:latest-postgresql
​ container_name: netdisco-postgresql
​ hostname: netdisco-postgresql
​ volumes:
 ​ - pgdata:/var/lib/postgresql/data
​ networks:
 ​ - netdisco-net

 netdisco-backend:
​ image: netdisco/netdisco:latest-backend
​ container_name: netdisco-backend
​ hostname: netdisco-backend
​ init: true
​ volumes:
 ​ - ./nd-site-local:/home/netdisco/nd-site-local
 ​ - ./config:/home/netdisco/environments
 ​ - ./logs:/home/netdisco/logs
​ environment:
 ​ NETDISCO_DOMAIN: localdomain
 ​ NETDISCO_DB_HOST: netdisco-postgresql
​ depends_on:
 ​ - netdisco-postgresql
​ networks:
 ​ - netdisco-net

 netdisco-web:
​ image: netdisco/netdisco:latest-web
​ container_name: netdisco-web
​ hostname: netdisco-web
​ init: true
​ ports:
 ​ - "5000:5000"

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​61

Pierre Famchon

​ volumes:
 ​ - ./nd-site-local:/home/netdisco/nd-site-local
 ​ - ./config:/home/netdisco/environments
​ environment:
 ​ NETDISCO_DOMAIN: localdomain
 ​ NETDISCO_DB_HOST: netdisco-postgresql
 ​ HYPNOTOAD_LISTEN: http://0.0.0.0:5000
 ​
​ depends_on:
 ​ - netdisco-postgresql
​ networks:
 ​ - netdisco-net

 netdisco-do:
​ image: netdisco/netdisco:latest-do
​ container_name: netdisco-do
​ hostname: netdisco-do
​ volumes:
 ​ - ./nd-site-local:/home/netdisco/nd-site-local
 ​ - ./config:/home/netdisco/environments
​ environment:
 ​ NETDISCO_DOMAIN: localdomain
 ​ NETDISCO_DB_HOST: netdisco-postgresql
 ​ HYPNOTOAD_LISTEN: http://0.0.0.0:5000
 ​
​ depends_on:
 ​ - netdisco-postgresql
​ profiles:
 ​ - cli-manual
​ networks:
 ​ - netdisco-net

volumes:
 pgdata:

networks:
 netdisco-net:
​ driver: bridge

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​62

Pierre Famchon

​ ipam:
 ​ config:
 ​- subnet: 10.10.0.0/16

deployment.yml :

database:
 name: 'netdisco'
 user: 'netdisco'
 pass: 'netdisco'
 #host: 'netdisco-postgresql'
 port: 5432

domain_suffix: 'localdomain'
site_name: 'Réseau SNMP'

Clé de session requise pour Netdisco Web
#session_cookie_key:
'd43b52e4f1d44f39b681db9494a7d2cf0fc2e2a9a79be30fc2d4039e037f4
7b2'

device_auth:
 - tag: 'snmpv3'
​ user: stagiaire
​ auth:
 ​ pass: nJS9cq5TFwWnQs
 ​ proto: SHA
​ priv:
 ​ pass: DHGC5uxBGBpn4d
 ​ proto: AES

Pas d’authentification (utilisateur guest en admin)
no_auth: true

Détection automatique
discover_no:
 - '127.0.0.1'

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​63

Pierre Famchon

BUT RT2 Béthune​ ​ ​ ​ ​ ​ ​ ​ ​ Page​64

	
	RAPPORT DE STAGE : TECHNICIEN RÉSEAU
	
	Sommaire
	Remerciements
	Introduction
	L’histoire de l’entreprise
	 1. Le fondateur, Guy Deniélou
	 2. La genèse de l’Université de Technologie de Compiègne
	 3. La Direction des Systèmes d’Information

	Missions
	Réalisations
	1. NETBOX
	a. Découverte de l'outil Netbox
	b. Déploiement de Netbox
	c. Configuration de Netbox

	
	2. NETDISCO
	a. Découverte de l'outil Netdisco
	
	
	
	
	
	
	
	b. Déploiement de Netdisco
	c. Configuration
	d. Cartographie de la topologie Réseau

	3. INTEGRATION A NETBOX
	a. Importation fichiers CSV
	
	b. Automatisation avec scripts pour l'intégration à Netbox

	Conclusion
	Bibliographie
	Glossaire
	
	Annexes
	Script Python : intégration Netbox en utilisant l’API
	Fichier de Configuration Netdisco

