U]

UNIVERSITE D’ARTOIS

-
.
_J
|
_
_

RAPPORT DE STAGE : TECHNICIEN
RESEAU

Auteurs : Pierre FAMCHON
Tuteur en entreprise : M. Wilfried Quet

Lieu : Université de Technologie de Compiegne

Sujet : Déploiement d'outils de discovery et d'inventory de réseaux (SoT)
Formation : R&T - 2éme Année

Durée : 8 semaines | 14/04 - 06/06

Annee : 2024-2025

» f »
h ; S = ut
p—— e

e —

Une photo de la facade du Centre Pierre Guillaumat 1, UTC

Déploiements d'outils de découverte et d'inventaire de réseaux

Pierre Famchon

Sommaire
REMERCIEMENTS........ooocooeoeeeeeee oo seeseee s ses e ses e 3
INTRODUGTIONoooooeoeoeeeeoeeoeeeoeee oo eeee e ees e eee e 4
L’HISTOIRE DE LENTREPRISE........oooooooooeoeoeoeoeoeeeoeoe oo 5-9
1. LE FONI?ATEUR, GUY DENIE[_OU ... TR 5
2. LA GENESE DE L'UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE.............. o6-7
3. LA DIRECTION DES SYSTEMES D'INFORMATION .cooooeeeseeeeeeseerese 8-9

a. Histoire de la création
b. Organisation structurelle et les activités

MISSIONS. ...ttt 10
REALISATIONS............ooooooeeeeeeeesescseeeeessssssssssessssssssssssessssssssssssssssssssssssssssssssssssesssssssssssseeees 11-42
1. NETBOX ettt sss s sss s sssns 11-24

a. Découverte de l'outils Netbox
b. Déploiement de Netbox
c. Configuration de Netbox
2. NETDISCO ettt snsaes 25-35
a. Découverte de 'outils Netdisco
b. Déploiement de Netdisco
c. Configuration de Netdisco
d. Cartographie de la topologie Réseau
3. INTEGRATION A NETBOX... it sssssssssssssessssssssssssssssannns 36-42
a. Importation fichiers CSV
b. Automatisation avec scripts

CONCLUSION.........oorcrte ettt sttt sttt sanes 43
BIBLIOGRAPHIE. ...ttt st 44
GLOSSAIRE. ...ttt st et 45
AINNEXES ...ttt et 46

- Script python : d'intégration a Netbox en utilisant I'API
- Fichiers de configuration Netdisco

BUT RT2 Béthune Page?2

https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.7zvak2keihoo
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.fksb5hcdzprx
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.wisoh8r69epp
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv
https://docs.google.com/document/d/1Q2pSOo9SZuEgQA7Usjr_kzVZ8pnJ_ywH8vBZRqt1Dq0/edit?tab=t.0#heading=h.in0898s86lxv

Pierre Famchon

Remerciements

Je souhaite remercier 'ensemble des personnes qui m'ont permis
d'obtenir ce stage ainsi que ceux qui m'ont assisté durant ces 2 mois au
sein de la Direction des Systemes d'Information (DSI).

Dans un premier temps, je remercie 'ensemble des intervenants présents
a I'Université Technologique de Compiegne, d'avoir pris le temps de me
conseiller et de moduler mon dossier de stage afin de commencer ce
stage le plus rapidement que possible.

J'adresse mes plus grands remerciements a Monsieur Harry CLAISSE,
Directeur de la DSI, de m'avoir accueilli au sein de ses locaux..

Je souhaite exprimer mes remerciements a mon tuteur au sein de la DS,
Monsieur Wilfried QUET, de m'avoir proposé ce stage, ses connaissances,
son temps et sa patience dans cette longue aventure.

Je remercie également Madame Patricia HUGOT et Monsieur Rémy HUET
pour leur patience, leur confiance et d'avoir consacré de leur temps a mes
différentes questions.

Je remercie également tous les membres du Service Systeme Réseaux
pour leurs explications, leur soutien et l'assistance qu'ils ont pu M'apporter
durant ce stage.

Enfin, je salue avec gratitude I'ensemble du personnel de la Direction des

Systemes d'Information pour leur accueil chaleureux, leur aide ainsi que
leur générosité dans cette aventure.

BUT RT2 Béthune Page 3

Pierre Famchon

Introduction

Dans un contexte de profonde transformation numérique, la Direction des
Systemes d'Information (DSI) a récemment initié une phase cruciale de
renouveau de son infrastructure réseau. Cette démarche stratégique vise a
migrer vers un modele plus robuste, vaste et sécurisé, afin de répondre aux
exigences croissantes en matiere de performance, de fiabilité et de
protection des données.

Cependant, ce renouvellement a mis en lumiére un défi majeur : I'absence
d'outils dédiés a la découverte et a l'inventaire précis du réseau. Avant cette
migration, la DSI ne disposait pas d'une "source de vérité" unique et
centralisée permettant d'inventorier et d'administrer de maniere
exhaustive I'ensemble de ses composants, qu'ils soient matériels (baies,
switchs, bornes Wi-Fi, postes de travail, etc.) ou virtuels (adresses IP, VLAN,
VRF, tunnels, etc.).

Cette lacune a engendré un manque critique d'un inventaire complet,
fiable et vérifiable en temps réel de l'infrastructure réseau. Une telle
situation complexifie non seulement la gestion quotidienne et la
maintenance préventive, mais elle représente également un frein majeur a
l'optimisation des ressources et a la réactivité face aux incidents.

C'est dans ce contexte que s'inscrit ce rapport de stage. Il détaillera les
missions et réalisations effectuées pour pallier ce manque, notamment par
I'étude et la mise en place d'outils de supervision et d'inventaire tels que
Netbox et NetDisco, essentiels pour rétablir une visibilité complete et une
administration efficace de l'infrastructure réseau rénovée.

BUT RT2 Béthune Page 4

Pierre Famchon

L'histoire de I'entreprise

1. Le fondateur, Guy Deniélou

Il existe que tres peu d'informations sur I'enfance de Guy Deniélou. Pour
résumer, il est né le 14 juin 1923 a Toulon d'un lieutenant de vaisseau, Albert
Jean René DENIELOU. Il fit des études secondaires jusqu'a I'arrivée de la
guerre ou il les interrompit pour s'’engager dans la Marine.

Une photo en uniforme de marin est disponible ci-dessous, Figure 1. A la
suite de plusieurs péripéties, il effectua une formation complémentaire au
sein de I'Ecole Polytechnique pour ensuite continuer a Science Po.

Durant ces années dans I'armée, il effectua des études sur les sous-marins
a propulsion nucléaire. Ce n'est qu'en 1959 ou Guy Deniélou fut recruté par
le Commissariat a I'énergie atomique et aux énergies alternatives, afin de
mener des études et de la conception sur les réacteurs nucléaires

Figure 1: Guy Deniélou en uniforme de marin,
source : Ecole Navale / Espace tradition / Officiers célébres

BUT RT2 Béthune Page5

Pierre Famchon
2. La genese de I'Université de Technologie de Compiegne

Les années 1960 marquerent les débuts d'une idée. En effet, le retard lié a
la technique en France fut important, dd a un certain mépris pour la
technologie, tres peu reconnu a I'époque et empéchant également 'acces
a certains hauts postes. L'idée de la création d'une école focalisée sur les
sciences appliquées et de créer un nouveau type d'ingénieur naquit.

En 1972, il quitta le CEA pour fonder I'Université de Technologie de
Compiegne ainsi que le réseau de ces universités technologiques (« la
premiere pierre » du Centre Benjamin Franklin, Figure 2). Cette université
se veut étre en étroite collaboration avec les industriels et participer aux
conseils scientifiques afin de définir les futures politiques scientifiques.

Sa localisation n'est également pas anodine. Dans un objectif de
réaménagement du territoire, I'Oise, en France, comme lieu pour ce
prototype universitaire fut choisie : énormément d'espace, proche mais
hors de la région parisienne, raccordée au réseau autoroutier et en lien
avec le futur aéroport Roissy Charles de Gaulle.

Figure 2 : Pose de la premiéere pierre du Centre Benjamin Franklin,
source : Histoire de ['UTC - UTC

BUT RT2 Béthune Page 6

Pierre Famchon

Aujourd’hui, I'UTC propose diverses formations dans les domaines de
l'ingénierie : que ce soit dans l'informatique, la mécanique, la biologie ou
encore le civil par exemple. Elle offre également la possibilité d'obtenir un
double diplébme, qui est une valeur ajoutée vis-a-vis des autres universités.

D'un point de vue pédagogique, les étudiants sont libres de choisir les
cours gqu'ils souhaitent suivre a hauteur de 300 cours divisés en plusieurs
catégories : Connaissances Scientifiques, Techniques et Méthodes et
Technologie et Sciences de 'Homme. Son approche pédagogique met
également l'accent sur les projets collaboratifs, les stages en entreprise et
l'internationalisation. L'école encourage aussi l'esprit entrepreneurial et la
prise d'initiative a travers les événements et les associations.

L'UTC fait partie du réseau des écoles du groupe des INSA (Instituts
Nationaux des Sciences Appliquées) ce qui lui permet d'avoir une tres forte
influence et reconnaissance en France et a l'international (la carte des
affiliées, Figure 3).

ECOLE 16 TECHNOLDUE 1Em;ﬁmumtnn.:|
SUPERIELIRE OE MONTREAL
FOLYTECERIIUE MONTREAL
UHIVERSITE DU DUEBEC o
ACHICUTIMI [&]
UHIVERSITE LAVAL [4] CRANFIELD UNITERS1TY | ST L - | VIENMA INVERSITY 86
\UKIVEREITE OE SHERBADINE SFTECHNOLDSY (1% o W s WD BUSINESS
i CHIBA IKSTITUTE 0§
e L .) L TECHHOLOEY
CEORTLA INSTITUTE | . UNIVERSITAT PRLITECRICA . | POLYTECKAC URIVERSITY OF TIRAMA

OF TECHMOLDGY | _ DE CATALUNTA | % 9
: h .. | URIVERSITE LIBAHAISE

UNIVERSITY OF RHODE |5LAND l_’ . . Fan
MYERSITADEG e s MBI ESEamT

TTUOIDIGENH, UMIFERSITE DE TECHMOLOGIE 5i0-
UMYERSITA DEGLI EURNPEENNE BE L UNIVERSITE 0E

STUDIDI TORIND gy | UMIVERSITE FRAHCRISE SHANGHM |F1ZE115]

B
UMIVERSITA DEGLI ot 1 AN JIKDTONG BRIVERSITY

ESCUELA coLomeiana | STUD RDMA TRE
DE INGERIERIA | %

UMIERSIDASE TECHOLDECA
FEDERAL DO FARAHA

usrERSI0AD I a WERSIDAD FAVALIAD s | IMIVERSITY OF THE
DEVALPARAISD . " wsVERSIDADMACIOHAL BEL SUR 7 | WITWATERSRARD

Figure 3: La liste et localisation des universités partenaires
source : Mobilité sortante - UTC

BUT RT2 Béthune Page7

Pierre Famchon
3. La Direction des Systemes d’'Information

a. Historique de la création

La Direction des Systemes d'Information (ou communément appelée DSI)
a été créée le ler janvier 2008 suivant les conseils du Ministere. L'ensemble
du personnel du support informatique a été regroupé au sein d'une seule
et unique entité nommeée la DSI. Le Service Informatique et le Service
Informatique de Gestion, ainsi que tous les informaticiens des différents
départements, ont fusionné et ont été regroupés géographiquement afin
de créer la DSI.

b. Organisation structurelle et les activités
La DSI, telle qu'on la connait aujourd’hui, est composée de trois services :

- Service Assistance et Gestion de Parcs
- Service Systeme et Réseau
- Service Ingénierie des Applications

Evidemmment, chaque service posséde ses propres activités qui sont les
suivantes:

- Le Service Assistance et Gestion de Parcs est essentiellement constitué
de techniciens qui assurent :

o La gestion du parc informatique pédagogique

o La formation des utilisateurs (Word, Excel, Outlook, ...)

o L'assistance aux utilisateurs (personnels et étudiants)

o L'installation / la configuration / le dépannage des postes du
personnel

o Un ensemble de projets annexes (CIL, carte multiservice,
photocopieurs, ...

- Le Service Systeme et Réseau, constitué d'ingénieurs et d'un technicien
qui assurent:

o La sécurité informatique

o La téléphonie

0 La gestion des systemes et du réseau (local, métropolitain et
régional)

BUT RT2 Béthune Page 8

Pierre Famchon

- Le Service Ingénierie des Applications est constitué de 8 développeurs et
1 concepteur web design. Ce service assure tous les développements
autour du systeme d'information tel que :

o L'interface avec les utilisateurs

o Le développement d'applications spécifiques

o Les développements des nouvelles fonctionnalités du
Systeme d'Information

o La mise en place et la maintenance applicative des logiciels
de 'TAMUE

J'ai effectué mon stage au sein du Service Systeme et Réseau, ou SR, en
compagnie de mon maitre de stage, Monsieur Wilfried QUET. Un schéma
plus complet, concernant les activités de la DSI, est disponible en Annexe.
Enfin, voici 'organigramme ainsi que les personnes affiliées a la DSI :

Direction des systémes d'informatian

Directeur
Harry Clalsse

Laurance Caux
Fezistanie de dinegtion

Florine Deranty
Bresparsalie des usages fu umingue

[|

Service systimes ¢l nEseaux Service inpénierie des applications Service assistance ef geslion de parcs
] l

Wilfried Quet Valérie Duflot Marc Villegas
Resaursable de sevece Arsparsable de service Femarsable de semice
1 T
Remy Hust Mohamad Akharaz Paftrice H.:n:ret_
St¢phane Poinsart (RSS! Arnaud Dalavigra Maryan Terlecki
P adjaint] Rachid EL Marmi Administralewss du parc enseignanent
Cédric Martinet Pascale Leclere
K ’ Blerta Mace Fministratnce du perc copes,
Adminisiratears systimes ot niseag Valentin Sévérac plaleformes pédagm)gues
Dominigue Chambelant Liliya Vorobiay . Rafia Berenguier
Gestbarnare infrastrechie web X m:rlslm'nmalﬁlmd-;qaslm
Patricia Hugot Développers o applications de gestion 5 |’!'HL1“
; . slsi vie Mays.
Gestiannaing systémiss of diploiemenl [:I::u[-gu m?:ﬁ?:: M'ririshaLmsﬁl!:F:ﬂe?:slu
Jean-Clawde Hernout tpee o £e cartes ot suppor paste clel
Gestiornaise systbmes néseaen el A Design Winciwes et macls
IElécommunicition Frédéric Praguin
Jdministea|mr de paies PC
Eugport poste chent Windews
Lawrent Aupetil
Brice Butstraen
Marc-Antoine Loeuillat
Support paste clienl Windows, Macll
1 Linu enseigaement
Patricia Bertaux
Lien higranchique H\:pn:ﬂrds wiiobilisibens, da
il Pesles § pousvair pare, Cempus Ty, Suppart poste clisnt
J0S/0RG/GEN 2024 09/12 Hidowr o B

Figure 4 : Organigramme de la DSI

BUT RT2 Béthune Page9

Pierre Famchon

Missions

Au cours de ce stage, mes missions principales se sont articulées autour
de I'étude, de la mise en place et du déploiement d'outils de supervision et
de monitoring des éléments d'infrastructure réseau. L'objectif était
d'améliorer la visibilité sur I'état du réseau, d'optimiser sa gestion et de
garantir la disponibilité des services.

Mes responsabilités ont notamment inclus:

e ['étude et la mise en place d'outils de supervision d'éléments
d'infrastructure : Cela a impliqué une recherche approfondie des
solutions existantes sur le marché, avec un focus particulier sur
Netbox et NetDisco. Cette phase a permis de comprendre leurs
fonctionnalités, leurs avantages et leurs limites, afin de déterminer
leur pertinence pour I'environnement réseau de l'entreprise.

e Le déploiement et la configuration de Netbox : J'ai été chargé de
I'installation de Netbox, un outil essentiel pour la gestion de
l'infrastructure réseau (IPAM et DCIM). Cette étape a nécessité la
configuration précise des différents modules, I'intégration des
équipements existants et la structuration des données pour une
représentation fidéle de l'infrastructure.

e Le déploiement et la configuration de NetDisco : J'ai également mis
en ceuvre NetDisco, un outil complémentaire permettant la
découverte automatique des équipements réseau. Cette tache a
impliqué la configuration des parametres de découverte, la gestion
des identifiants et l'intégration des données collectées pour une
cartographie dynamique du réseau.

e [a mise en place d'outils de monitoring sur les liens critiques de
l'infrastructure : Au-dela de la supervision globale, une attention
particuliere a été portée a la surveillance des liens réseau vitaux. J'ai
configuré des systemes de monitoring spécifiques pour ces liens,
permettant une détection proactive des problemes et une réactivité
accrue en cas d'incident, contribuant ainsi a la stabilité et a la
performance de l'ensemble de l'infrastructure.

BUT RT2 Béthune Page10

Pierre Famchon

Réalisations

Au cours de mon stage, les principales réalisations ont porté sur |I'étude, le
déploiement, la configuration et I'intégration de deux outils fondamentaux
pour la supervision et I'inventaire de l'infrastructure réseau : Netbox et
NetDisco. Ces implémentations ont été cruciales pour répondre au besoin
identifié d'une “source de vérité complete” et fiable pour les équipements
réseau de la DSI, notamment suite a une période de renouveau et de
migration vers une infrastructure plus robuste, vaste et sécurisée.

1. NETBOX

Netbox a été sélectionné comme l'outil central de gestion de
l'infrastructure réseau (IPAM et DCIM), essentiel pour inventorier et
administrer les équipements physiques et virtuels. Sa capacité a offrir une
vue d'ensemble détaillée et structurée de l'infrastructure en fait un pilier
de la gestion moderne des réseaux.

a. Découverte de l'outil Netbox

Netbox est une application web open-source de gestion d'adresses IP
(IPAM - |P Address Management) et de gestion de l'infrastructure de
centre de données (DCIM - Data Center Infrastructure Management).
Concu spécifiquement pour répondre aux besoins des professionnels de
I'I'T souhaitant documenter et modéliser leurs réseauy, il se distingue par sa
capacité a maintenir une "Source of Truth" fiable et centralisée pour
l'ensemble de l'infrastructure réseau.

Son architecture est basée sur le framework web Django (Python), ce qui
lui confére robustesse, extensibilité et une grande flexibilité. Les données
sont stockées dans une base de données PostgreSQL, réputée pour sa
fiabilité et sa performance dans la gestion de grands volumes de données
relationnelles. Netbox ne se limite pas a un simple inventaire statique ; il
permet de modéliser des relations complexes entre les différents
composants réseau, incluant :

BUT RT2 Béthune PageTl

Pierre Famchon

e Adresses IP et sous-réseaux (IPAM) : Gestion des préfixes, adresses
IP individuelles, VLANSs, VRF (Virtual Routing and Forwarding) et
tunnels VPN. Cette fonctionnalité est cruciale pour éviter les conflits
d'adresses et pour une planification rigoureuse de l'adressage
réseau.

e Equipements physiques (DCIM) : Inventaire des baies, des
dispositifs (commutateurs, routeurs, serveurs, bornes Wi-Fi, pare-feu),
de leurs emplacements physiques, de leurs types, de leurs réles et de
leurs connexions physiques et logiques (cablage, interfaces).

e Composants modulaires : Prise en charge des modules d'interfaces,
des alimentations électriques et d'autres composants internes des
éguipements.

e Opérateurs et circuits : Documentation des circuits de données
fournis par des opérateurs externes.

e Virtualisation : Gestion des clusters, des machines virtuelles et de
leurs connexions réseau.

L'interface utilisateur de Netbox est intuitive et riche en fonctionnalités,
permettant des recherches rapides, des filtrages complexes et une
visualisation claire de la topologie. De plus, son API RESTful exhaustive
permet une automatisation poussée des taches d'inventaire et
d'administration, ce qui est un avantage considérable dans les
environnements dynamiques comme celui de la DSI.

Contexte de la DSI : Pour la DSI, 'adoption de Netbox est une réponse
directe a I'absence d'un inventaire complet et fiable aprés la migration des
équipements. Sans une vision claire de l'infrastructure matérielle (baies,
switchs, bornes Wi-Fi, PC) et virtuelle (IP, VLAN, VRF, tunnels), la gestion, le
dépannage et la planification des évolutions étaient devenus
particulierement complexes. Netbox a été identifié commme I'outil capable
de centraliser ces informations et de servir de référence unique pour tous
les intervenants, garantissant ainsi une meilleure cohérence des données
et une efficacité accrue des opérations.

BUT RT2 Béthune Page12

Pierre Famchon

b. Déploiement de Netbox

Le déploiement de Netbox a été réalisé en utilisant la technologie des
conteneurs Docker et 'outil d'orchestration Docker Compose. Ce choix
technique a été motivé par plusieurs avantages significatifs :

e Isolation de I'environnement : Docker permet d'encapsuler
I'application Netbox et toutes ses dépendances (base de données
PostgreSQL, Redis pour le cache) dans des conteneurs isolés, évitant
ainsi les conflits avec d'autres applications ou librairies présentes sur
le systeme hote.

e Portabilité et reproductibilité : Les configurations Docker Compose
garantissent que l'environnement de Netbox peut étre déployé de
maniere identique sur n'importe quel serveur compatible Docker,
facilitant la reproductibilité de l'installation et les futurs transferts ou
mises a jour.

e Facilité de gestion : Docker Compose simplifie la gestion de
I'ensemble des services nécessaires a Netbox (base de données,
application web, worker, etc.) via un seul fichier de configuration
(docker-compose.yml) et des commandes unifiées.

e Rapidité de déploiement : L'utilisation de conteneurs pré-configurés
réduit considérablement le temps et la complexité de l'installation
par rapport a un déploiement manuel de chaque composant.

Voici les étapes détaillées du processus de déploiement :

Mise a jour des paqguets systeme et installation des prérequis Docker :
Avant toute installation, il est impératif de s'assurer que le systeme
d'exploitation est a jour pour bénéficier des derniéres corrections de
sécurité et des dépendances logicielles.

sudo apt update
sudo apt install -y ca-certificates curl gnupg lsb-release

BUT RT2 Béthune Page13

Pierre Famchon

Ces commandes mettent a jour la liste des paquets disponibles et
installent les outils nécessaires pour gérer les certificats SSL, télécharger
des fichiers (curl), gérer les clés GPG et identifier la version de la
distribution Linux.

Ensuite, la clé GPG officielle de Docker a été ajoutée au trousseau de clés
du systeme. Cette étape est cruciale pour que le gestionnaire de paquets
APT puisse vérifier I'authenticité des paquets Docker et s'assurer qu'ils
proviennent d'une source fiable.

sudo mkdir -p /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo
gpg --dearmor -o /etc/apt/keyrings/docker.gpg

Le dépdt Docker officiel a été ajouté a la liste des sources APT. Cela permet
au systeme de savoir ou trouver les paquets Docker a installer.

La commande 1sb_release -csinsere dynamiquement le nom de code
de la distribution Ubuntu (stable dans ce cas), assurant que le bon dépdbt
est utilisé.

echo "deb [arch=$(dpkg --print-architecture)
signed-by=/etc/apt/keyrings/docker.gpg]l
https://download.docker.com/linux/ubuntu S(1lsb_release -cs)
stable" | sudo tee /etc/apt/sources.list.d/docker.list >
/dev/null

BUT RT2 Béthune Page 14

Pierre Famchon

1. Installation de Docker Engine et Docker Compose Plugin:

Une fois le dépdt ajouté, les paquets Docker Engine (docker-ce,

docker-ce-cli, containerd.io) et le plugin Docker Compose (v2) ont été
installés.

sudo apt update

sudo apt install -y docker-ce docker-ce-cli containerd.io
docker-compose-plugin

o docker-ce est le moteur Docker de la communauté.

o docker-ce-cli est 'outil en ligne de commande pour interagir
avec Docker.

o containerd.io est un runtime de conteneurs de haut niveau.

o docker-compose-plugin est la version v2 de Docker Compose,
intégrée en tant que plugin Docker, simplifiant son utilisation
(docker compose au lieu de docker-compose).

2. Démarrage et activation du service Docker :

Apres l'installation, le service Docker a été démarré et configuré pour se
lancer automatiqguement au démarrage du systeme.

sudo systemctl start docker
sudo systemctl enable docker

Ceci assure que Docker est opérationnel et persistant aprés un
redémarrage du serveur.

3. Récupération des fichiers de Netbox Docker :

Les configurations Docker Compose pour Netbox sont fournies par la
communauté via un dépdt GitHub. Le dépdt a été cloné et le répertoire de
travail a été défini sur ce nouveau dossier.

git clone https://github.com/netbox-community/netbox-docker.git
cd netbox-docker

Il est a noter qu'il est possible de spécifier une version précise de Netbox a
utiliser en modifiant le fichier .env ou en le créant s'il n'existe pas, par

BUT RT2 Béthune Pagel5

Pierre Famchon

exemple echo "VERSION=v4.2.3" > .env.Cela garantit la stabilité et la
reproductibilité des déploiements.

4. Lancement des conteneurs Netbox avec Docker Compose :

Les images Docker nécessaires pour Netbox (application, base de données,
Redis, etc.) ont été téléchargées, puis les conteneurs ont été démarrés en
mode détaché (-d).

sudo docker compose pull
sudo docker compose up -d

docker compose pull télécharge lesimages les plus récentes spécifiées
dans le docker-compose.yml. docker compose up -d démarre tous les
services définis dans le fichier docker-compose.yml en arriere-plan.

Pour vérifier le bon fonctionnement des conteneurs et accéder a leurs logs
en cas de probleme, les commandes suivantes ont été utilisées :

sudo docker compose ps

sudo docker compose logs netbox

docker compose ps liste les conteneurs et leur statut. docker compose
logs netbox affiche les logs du conteneur spécifique de l'application
Netbox.

5. Exposition du port web de Netbox:

Par défaut, I'image Docker de Netbox n'expose pas directement son port
web (8080 interne au conteneur) a I'héte. Pour rendre l'interface web
accessible depuis l'extérieur du serveur, une modification a été apportée
au fichier docker-compose.override.yml. Ce fichier permet de surcharger
les configurations du docker-compose.yml principal sans le modifier
directement.

nano docker-compose.override.yml

Le contenu suivant a été ajouté ou modifié pour mapper le port 8000 de
I'n6te au port 8080 du conteneur netbox:

BUT RT2 Béthune Pagelo

Pierre Famchon

s
GNU nano 7.2 docker-compose.override.yml *

Apres cette modification, les conteneurs ont été relancés pour appliquer
les changements:

sudo docker compose down
sudo docker compose up -d

docker compose down arréte et supprime les conteneurs existants, et
docker compose up -d lesrecrée avec la nouvelle configuration de port.

6. Acceés a l'interface web et création d'un superutilisateur:

Une fois le port exposé, l'interface web de Netbox est devenue accessible
via un navigateur web en utilisant I'adresse IP du serveur et le port 8000
(ex:http://192.168.100.160:8000).

Pour la premiere connexion, il est nécessaire de créer un superutilisateur
(administrateur). Ceci se fait en accédant au shell du conteneur Netbox et

en exécutant une commande Django:

sudo docker exec -it netbox-docker-netbox-1 bash
python3 /opt/netbox/netbox/manage.py createsuperuser

Il a été demandé de fournir un nom d'utilisateur (ex: admin) et un mot de
passe (Progtree). L'adresse email est un champ facultatif.

Pour des raisons de sécurité, le mot de passe de |'utilisateur admin a été
réinitialisé aprés la création initiale pour s'assurer qu'il soit fort et ne soit
pas un mot de passe par défaut connu:

python3 /opt/netbox/netbox/manage.py changepassword admin

Enfin, un redémarrage des conteneurs Netbox a été effectué pour
s'assurer que toutes les configurations soient bien prises en compte:

BUT RT2 Béthune Pagel17

Pierre Famchon

sudo docker compose restart

jif netbox

Community

Connexion

Nom d'utilisateur

Mot de passe

Connexion

Acces g la page de connexion

7. Génération du token :

Une fois connecté avec le superutilisateur, il a été possible de générer un
token d'API Netbox.

Ce token est essentiel pour permettre a des scripts externes (comme ceux
développés pour I'importation de données) d'interagir de maniere
sécurisée avec I'API RESTful de Netbox.

Ce token, par exemple 84946ef59ffeb57bc7abe7c6ac731f787eb272c57, sera

utilisé dans la configuration des scripts d'automatisation.
Page d'accueil de Netbox :

« o O @ 192.168.100.160

1. netbox

BUT RT2 Béthune Page18

Pierre Famchon

c. Configuration de Netbox

La phase de configuration de Netbox a été axée sur la préparation de
l'importation massive et automatisée des données de l'infrastructure
réseau. L'objectif était de structurer un processus permettant de peupler
Netbox avec des informations complétes et précises, en minimisant les
interventions manuelles et en garantissant la cohérence des données.

1. Arborescence des fichiers du dépot Netbox Docker :

Avant de commencer la configuration, une analyse de I'arborescence des
fichiers clonés du dépdbt netbox-docker a été effectuée. Cela a permis de
comprendre l'organisation du projet, les fichiers de configuration
importants (configuration.py, docker-compose.yml,
docker-compose.override.yml), les scripts (docker-entrypoint.sh), et les
répertoires d'environnement (env). Cette compréhension est fondamentale
pour toute modification ou personnalisation future. L'outil tree -a a été
utilisé pour visualiser cette arborescence.

2. Création des répertoires pour lI'importation des fichiers :

Afin d'organiser les scripts d'automatisation et les fichiers de données, une
nouvelle structure de répertoires a été mise en place, distincte du
répertoire netbox-docker. Le répertoire netbox-device-autodiscovery a
été créé, avec un sous-répertoire import_yaml pour les scripts et un
sous-répertoire network_devices pour les fichiers de données YAML.

mkdir netbox-device-autodiscovery/import_yaml
cd netbox-device-autodiscovery
mkdir network_devices

Cette organisation permet de maintenir une séparation claire entre les
configurations officielles de Netbox et les scripts développés
spécifiguement pour l'entreprise, facilitant la gestion des versions et les
mises a jour.

BUT RT2 Béthune Pagel19

Pierre Famchon

3. Découpage des données réseau en fichiers YAML structurés :

Le fichier network_devices.yaml initial, qui contenait I'inventaire des
équipements (obsolete mais constituant la base de mon backend), a été
découpé en plusieurs sous-fichiers YAML, organisés par type
d'équipement. Cette granularité simplifie grandement l'exécution des
scripts d'importation, car elle permet de traiter des catégories spécifiques
d'équipements et de minimiser les erreurs. L'arborescence résultante
ressemble a ceci:

- network_devices/
— access-points/
| — ap-bf.yaml
| — ap-cima.yaml
— captive-portals/
| L— captive_portals.yaml
— radius/
| L— radius.yaml
— switches/
| |— sw-5000.yaml

| F— sw-bf.yaml
F— vpn-servers/
| L— vpn_servers.yaml
L— wlc/
L— wlc.yaml

Chaque fichier YAML contient la description d'un ou plusieurs
équipements de méme type, avec leurs propriétés (nom, type, adresse IP,
adresse MAC, role, ports, description, etc.). Ce format structuré est essentiel
pour que les scripts Python puissent interpréter correctement les données
et les mapper aux objets correspondants dans Netbox.

BUT RT2 Béthune Page 20

Pierre Famchon

4. Développement des scripts Python pour l'interaction avec
I'API Netbox :

Un ensemble de scripts Python a été développé pour automatiser le
processus d'importation des données YAML dans Netbox via son API
RESTful. Ces scripts sont situés dans le répertoire import_yaml.

Ce répertoire contient :

— network_devices # répertoire contenant les .yaml
— __pycache__

|

— main.py

— device_manager.py
— netbox_api.py

— netbox_config.py
L— yaml_processor.py

—

Dris Very Assurance .

netbox netbox X

=]

netbox

Microsoft DHCP

Automatisation possible de Netbox
source : https./netboxlabs.com

BUT RT2 Béthune Page 21

Pierre Famchon

main.py :C'est le point d'entrée principal pour I'exécution du processus
d'importation. Il est responsable de définir le chemin d'accés au fichier
YAML que yaml_processor.py doit utiliser.

import os
from yaml_processor import load_and_process_yaml # Importation
correcte de ton module

def main():

Chemin relatif du fichier YAML dans le sous-dossier
network_devices

yaml_path = "network_devices/access-points/ap-rob.yaml"”

print("+«’ Démarrage de 1'importation des équipements vers
NetBox...")

load_and_process_yaml(yaml_path) # Appel de la fonction de
traitement

print("[%4 Importation terminée.")
if __name__ == "__main__"
main()

Ce script permet de lancer le processus pour un fichier YAML spécifique,
facilitant le débogage et I'importation sélective.

device_manager.py : Ce module est central pour la gestion des
équipements et de leurs interfaces dans Netbox. Il contient des fonctions
pour :

- get_interface_id_by_name(device_id, interface_name) :

Récupeére I'ID d'une interface spécifique pour un périphérique
donnég, en interrogeant I'API Netbox.

- device_exists(device_name)

Vérifie si un égquipement avec un nom donné existe déja dans
Netbox. Cette fonction est cruciale pour déterminer si une opération
de création ou de mise a jour est nécessaire.

- create_or_update_device(payload, existing_device=None) :

Créer un nouvel équipement ou met a jour un égquipement existant
dans Netbox. Cette fonction prend en charge le "payload" (les

BUT RT2 Béthune Page 22

http://main.py

Pierre Famchon

données de lI'équipement) et gere la logique de création (POST) ou de
mise a jour (PATCH) en fonction de l'existence de I'équipement. Les
codes de statut HTTP (200, 201, 204) sont vérifiés pour confirmer le
succes de 'opération.

get_device_type_id(device_type_name) :

Récupeére I'ID du type de périphérique correspondant au nom fourni
(ex: "cisco-switch").

get_site_id(site_name) :
Récupere I'ID du site (emplacement physique) dans Netbox.
create_interfaces(device_id, port_list, mgmt_only) :

Créer les interfaces pour un équipement donné. Il vérifie d'abord si
l'interface existe déja ; si ce n'est pas le cas, il la crée avec un type par
défaut (par exemple, "1000base-t") et la propriété mgmt_only
(interface de gestion uniqguement). Les IDs des interfaces créées ou
récupérées sont stockées.

assign_mac_to_interface(interface_id, mac_address) :

Assigne une adresse MAC a une interface spécifique. La fonction
gere la création de 'adresse MAC si elle n'existe pas et son
association a l'interface, ou la mise a jour si I'adresse MAC existe mais
Nn'est pas encore assignée. Une fonction utilitaire
format_mac_address assure que I'adresse MAC est au bon format

(XX XX o XX XX XX 2 XX).

assign_ip_to_device(device_id, ip_address):

Assigne une adresse IP a la premiere interface trouvée pour un
équipement donné (ou crée 'adresse IP si elle n'existe pas).

netbox_api.py : Ce module regroupe des fonctions utilitaires pour
simplifier les interactions récurrentes avec I'API Netbox, fournissant des
meéthodes pour récupérer les |IDs de différents objets Netbox. Il utilise les
configurations de netbox_config.py.

get_device_type_id(device_type_name) :

BUT RT2 Béthune Page 23

Pierre Famchon

Récupere I'ID d'un type de périphérique par son modele.
- device_exists(device_name) :

Vérifie si un périphérique existe par son nom, retournant l'objet
périphérique si trouveé.

- get_device_role() :

Récupere I'ID d'un réle de périphérique (ex: "Wi-Fi AP").
- get_site_id(site_name) :

Récupere I'ID d'un site par son nom.

- create_or_update_device(device_payload,
existing_device=None) :

Une version plus générique pour créer ou mettre a jour un
périphérique, incluant l'assignation du role.

- get_device_role_id(role_name) :

Récupere I'ID d'un réle de périphérique générique.

netbox_config.py : Ce fichier centralise les parametres de connexion a
I'API Netbox, rendant les autres scripts indépendants de ces valeurs et
facilitant leur mise a jour.

NETBOX_URL = "http://192.168.100.160:8000/api/"
NETBOX_TOKEN = "04946ef59ffeb57bc7abe/cbac/31T787eb272c57"

HEADERS = {
"Authorization": f"Token {NETBOX_TOKEN}",
"Content-Type": "application/json",

}
DEBUG_MODE = True

yaml_processor.py :C'est le module principal qui orchestre le processus
d'importation. Il charge le fichier YAML, itere sur chaque équipement défini

et appelle les fonctions appropriées de device_manager.py et

BUT RT2 Béthune Page 24

Pierre Famchon

netbox_api.py pour créer ou mettre a jour les équipements, leurs
interfaces, adresses IP et MAC dans Netbox.

La fonction load_and_process_yaml(file_path) estle coeur de ce module.
Elle lit le fichier YAML, extrait les informations pour chaque périphérique
(nom, type, IP, MAC, rble, ports), formate les adresses MAC si nécessaire,
récupere les IDs des types de périphériques, réles et sites, puis appelle
create_or_update_device pour gérer I'équipement lui-méme. Ensuite, elle
traite la liste des ports pour créer les interfaces (y compris la gestion des
plages de ports GB/1-24) et assigne les adresses IP et MAC aux interfaces
correspondantes.

Elévations des baies
Résultats (B Filtres

Al A2 A3 A5 A7

n 2 ” 2 @ 2
a1 2 a1 1 UCS-Fi6as4-1 a 7
2 UCSFi6454-2 2
3 X 39 3 39 39 39 NSK.DSLA
B UM CCBoot 3 Storage3-01-MGMT 3 3 B 3
36 36 Storage3-01-SHELF1 36 K 5 3 NSKDSI5

3 36
3 35 USCHX240-2 35 £
3 Storage3-01-SHELF2) I - 3 950051 SW2
3 USC-HX240-3 3 STORAGEO7-08 33 C9500-D5H1 SW1
.

Storage3-01-SHELF3

32
31 STORAGE07-08 SHELF 1
30 30 3 30
29 29 2 UCs-C240-1 29 STORAGEQ7-08 SHELF 2
27 27 27 ucs-C240-2 27 FWASA-BACKUP
25 25 ucs-C240-3 25 STORAGE 1-05 STORAGE 1-06 25 FWASA
23 23 23 23 23 23
22 NIM SERVEUR 22 22 22 22 22
21 21 21 21 21 SWITCH INTERDUSTER 1 21
19 NIM RACK DISQUE 19 19 ucs2 19 19 19 wLct
18 18 18 18 18 18 'WLC1-BACKUP
17 17 7 7 STORAGE 1-03 STORAGE 1-04 7
4 4 4 4 4 4
13 STORAGE 1-02 STORAGE 1-01
12
1 STORAGE 1-01-02 SHELF
0 0 10 0 0 0
6 6 6 6 6 6
5
4 4 4 4 4 4
3 3 3 3 3 3
2 2 2 2 2 2

A5 A7

B Télécharger SVG B Télécharger SVG B Télécharger SVG B Télécharger SVG B Télécharger SVG B Télécharger SVG
Al A2 A3 A4

élévation de Baie de la DSI, réalisé suite a mon référencement de ces
derniéres

BUT RT2 Béthune Page 25

Pierre Famchon

2. NETDISCO

NetDisco a été intégré en complément de Netbox pour sa capacité a
découvrir automatiqguement les équipements réseau et a collecter des
informations détaillées via des protocoles comme SNMP. Il joue un réle
crucial en alimentant Netbox avec des données dynamiques et a jour,
garantissant que l'inventaire reste pertinent au fil des évolutions de
l'infrastructure.

a. Découverte de l'outil Netdisco

NetDisco est une application open-source basée sur Perl, congue pour la
découverte, I'inventaire et la cartographie des réseaux informatiques. Il se
positionne comme un outil d'audit et de monitoring passif, capable
d'interroger les équipements réseau (commutateurs, routeurs, pare-feu,
points d'acces) pour récupérer des informations précieuses sur leur
configuration, leurs interfaces, leurs tables de routage, leurs MAC-adresses,
et leurs connexions physiques (via CDP, LLDP, FDP).

Les fonctionnalités clés de NetDisco incluent :

e Découverte automatique (Discovery) : NetDisco peut scanner des
plages d'adresses IP ou des sous-réseaux pour identifier les
équipements actifs. Il utilise principalement le protocole SNMP
(Simple Network Management Protocol) pour interroger les
dispositifs, mais peut également s'appuyer sur d'autres méthodes
pour identifier les connexions et les propriétés des équipements.

e Collecte de données (Collect) : Une fois un équipement découvert,
NetDisco collecte une quantité significative de données:
o Informations systeme (nom d'héte, modele, numéro de série,
version du firmware).
Interfaces (nom, type, statut, vitesse, adresses MAC).
Tables de pontage (MAC-adresse / port).
Tables ARP (adresse IP / MAC-adresse).
Informations VLAN.
Détails sur les ports PoE.

O O O O O

BUT RT2 Béthune Page 26

Pierre Famchon

e Cartographie de la topologie (Topology Mapping) : En utilisant les
informations de protocole de découverte de voisins (CDP pour Cisco,
LLDP pour des équipements multi-constructeurs), NetDisco peut
établir une carte des interconnexions entre les équipements réseau,
offrant une visualisation graphique de la topologie.

e Inventaire et recherche : Toutes les données collectées sont
stockées dans une base de données (généralement PostgreSQL),
permettant des recherches rapides et la génération de rapports
détaillés sur I'état du réseau.

e Alertes : Bien que moins orienté monitoring temps réel que d'autres
outils, NetDisco peut générer des alertes sur des changements d'état
ou des découvertes d'équipements non autorisés.

Contexte de la DSI : Dans le cadre du renouvellement de l'infrastructure,
l'intégration de NetDisco répond au besoin urgent d'une découverte
automatisée et continue des équipements réseau. La DSI se trouvait sans
un inventaire complet et a jour en temps réel. NetDisco permet de
combler cette lacune en scannant le réseau pour identifier tous les
nouveaux équipements ou les changements sur les équipements
existants. Ses données seront ensuite exploitées pour maintenir Netbox a
jour, assurant ainsi la fiabilité de la "source de vérité" de l'infrastructure.
L'automatisation de la découverte réduit considérablement la charge de
travail manuelle et garantit que l'inventaire dans Netbox refléete toujours la
réalité du terrain.

BUT RT2 Béthune Page 27

Pierre Famchon

b. Déploiement de Netdisco

Le déploiement de NetDisco, a I'instar de Netbox, a été réalisé en utilisant
Docker et Docker Compose. Cette approche garantit la méme isolation,
portabilité et facilité de gestion pour I'environnement NetDisco, qui se
compose de plusieurs services (application web, backend de découverte,
base de données PostgreSQL).

Les étapes détaillées du déploiement sont les suivantes :

1. Récupération des fichiers NetDisco Docker :

La premiére étape consiste a récupérer les configurations Docker Compose
de NetDisco depuis son dépdt GitHub officiel.

git clone https://github.com/netdisco/netdisco.git
cd netdisco

Cette commande télécharge l'intégralité du projet NetDisco, y compris les
fichiers Docker Compose et les configurations par défaut.

2. Création des répertoires et ajustement des permissions:

NetDisco nécessite des répertoires spécifiques pour stocker ses logs et sa
configuration locale, et ces répertoires doivent avoir des permissions
d'écriture pour l'utilisateur sous lequel NetDisco s'exécute dans le
conteneur (généralement I'UID 901).

mkdir logs config nd-site-local
chmod 777 logs config nd-site-local

- logs: Pour les fichiers de log de l'application NetDisco.

- config:Pour les fichiers de configuration de NetDisco (comme
deployment.yml).

- nd-site-local : Pour les personnalisations spécifiques au site ou les
plugins.

- chmod 777 :est une permission temporaire tres permissive. Pour un
environnement de production, il faudrait affiner ces permissions
pour qu'elles soient moins ouvertes, par exemple en attribuant la
propriété au groupe de |'utilisateur NetDisco ou en utilisant des ACLs
plus granulaires une fois I'UID de |'utilisateur Docker connu.

BUT RT2 Béthune Page 28

Pierre Famchon

Cependant, pour une installation rapide et un environnement de
stage, cela permet de s'assurer qu'il n'y a pas de probléeme de
permission bloguant.

3. Installation et Lancement initial de Docker Compose :

Une fois les répertoires préparés, les images Docker de NetDisco sont
téléchargées et les conteneurs sont lancés.

docker compose pull
docker compose up -d

- docker compose pull:Télécharge lesimages Docker nécessaires
pour tous les services définis dans le docker-compose.yml de
NetDisco (par exemple, netdisco/netdisco, postgres).

- docker compose up -d:Démarre tous les services en arriere-plan.
Cela inclut le conteneur de la base de données PostgreSQL, le
backend de NetDisco (pour la découverte), le service web et d'autres
services auxiliaires.

4. Configuration des fichiers Docker Compose et NetDisco :

La configuration est une étape cruciale pour adapter NetDisco a
I'environnement réseau spécifique de la DSI.

Modification de docker-compose.yml : Bien que le docker-compose.yml par
défaut soit fonctionnel, il a pu nécessiter des ajustements pour des
mappings de ports spécifiques, des volumes persistants ou des
configurations réseau avancées si l'intégration avec d'autres outils (comme
Netbox sur un autre conteneur) l'exigeait.

Pour NetDisco, il est crucial que les services (web, backend, db) puissent
communiquer entre eux. Le fichier par défaut est généralement bien
configuré pour cela.

Configuration de deployment.yml : Ce fichier est le coeur de |la
configuration de NetDisco. Il se trouve dans le répertoire
netdisco/netdisco/config (ou mappé dans ./configsurl'hdte).

BUT RT2 Béthune Page 29

Pierre Famchon

deployment.yml - Configuration Netdisco

database:
name: 'netdisco’
user: 'netdisco’
pass: 'netdisco’
#host: 'netdisco-postgresql’
port: 5432

domain_suffix: 'localdomain'
site_name: 'Réseau SNMP'

Clé de session requise pour Netdisco Web
#session_cookie_key:
'd43b52e4f1d44f39b681db9494a7d2cfOfc2e2a9a79be30fc2d4039e037F47b2
device_auth:
- tag: 'snmpv3’
user: stagiaire

auth:

pass: nJS9cq5TFwWnQs
proto: SHA

priv:

pass: DHGC5uxBGBpn4d
proto: AES

Pas d’authentification (utilisateur guest en admin)
no_auth: true

Détection automatique
discover_no:
- '127.0.0.1"

Les parametres clés a configurer incluent :

- db :Lesinformations de connexion a la base de données
PostgreSQL. Dans un environnement Docker Compose, host=db
signifie que le service backend de NetDisco se connecte au service db
via le nom de service Docker Compose.

BUT RT2 Béthune Page 30

Pierre Famchon

- site :Desinformations générales sur le déploiement de NetDisco
(nom, logo, etc.).

- discovery :C'estla section la plus importante. Elle contient les
informations nécessaires a NetDisco pour interroger les
équipements réseau :

- default_community :Lescommunautés SNMPv2c a essayer.

- snmp_versions :Lesversions de SNMP a utiliser (ici 2c et 3).

- snmpv3 :La configuration détaillée pour les identifiants SNMPV3
(nom d'utilisateur, protocoles d'authentification et de confidentialité,
et leurs phrases secrétes).

5. Redémarrage et mise a jour de la Base de Données
NetDisco :

Aprés toute modification de deployment.yml ou docker-compose.yml, les
conteneurs doivent étre redémarrés pour que les changements soient pris
en compte.

sudo docker compose restart

Il est parfois nécessaire de redémarrer spécifiguement le conteneur
netdisco-web si des problemes de connexion a la base de données
persistent, pour s'assurer qu'il recharge bien sa configuration.

Enfin, le schéma de la base de données de NetDisco doit étre créé ou mis
a jour.

sudo docker exec -it netdisco-backend bin/netdisco-db-deploy

Cette commande exécute le script netdisco-db-deploy a l'intérieur du
conteneur netdisco-backend. Ce script crée toutes les tables nécessaires,
les vues et les fonctions dans la base de données PostgreSQL pour que
NetDisco puisse stocker ses données. Apres |'exécution réussie, il est
recommandé de redémarrer a nouveau les services netdisco-web et
netdisco-backend pour s'assurer qu'ils utilisent le schéma de base de
données a jour.

sudo docker compose restart netdisco-web netdisco-backend

BUT RT2 Béthune Page 31

Pierre Famchon

c. Configuration

La configuration de NetDisco a été validée par une série de tests rigoureux,
s'assurant de sa capacité a interagir correctement avec les équipements
réseau de la DSI et a collecter des informations fiables.

1. Tests de connectivité inter-conteneurs et applicative :

Il est primordial de s'assurer que les différents composants de |'application
NetDisco peuvent communiguer entre eux, ainsi qu'avec les ressources
externes (les équipements réseau).

Résolution DNS interne des conteneurs : Un test a été effectué pour vérifier
que le conteneur netdisco-backend pouvait résoudre le nom d'héte de la
base de données.

sudo docker exec -it netdisco-backend ping netdisco-postgresql

o Un ping réussi vers db (le service PostgreSQL) confirme que la
résolution DNS interne fonctionne correctement.

o Sides erreurs de connexion (utilisateur/mot de passe
incorrects, base de données non trouvée) apparaissent, elles
sont généralement visibles dans les logs du conteneur
netdisco-backend.

Accessibilitée IP depuis le conteneur backend : Pour que NetDisco puisse
découvrir les équipements réseau, le conteneur netdisco-backend doit
avoir une connectivité réseau vers le réseau de la DSI.

sudo docker exec -it netdisco-backend ping 172.20.0.42
Exemple d'IP d'un équipement réseau de la DSI

o Un ping réussi indique que le routage et les regles de pare-feu
entre le conteneur Docker et le réseau interne sont
correctement configurés. C'est une étape fondamentale avant
toute tentative de découverte SNMP.

BUT RT2 Béthune Page 32

Pierre Famchon

2. Test SNMPv3 dans le conteneur du backend :

La découverte de NetDisco repose fortement sur SNMP. Un test direct
depuis le conteneur netdisco-backend a été effectué pour valider que les
identifiants SNMPV3 configurés (stagiaire, phrases secretes SHA et AES)
permettaient bien d'interroger un équipement cible.

Installation des outils SNMP dans le conteneur : Par défaut, les outils de
ligne de commande SNMP (comme snmpwalk) peuvent ne pas étre
installés dans l'image Docker de NetDisco. Pour les besoins de test, ils ont
été installés temporairement.

sudo docker exec -u root -it netdisco-backend sh
apk update
apk add net-tools net-snmp

o apk update met a jour la liste des paquets Alpine Linux (la
base de I'image Docker NetDisco). apk add net-tools
net-snmp installe les outils réseau classiques et la suite d'outils
SNMP.

Exécution de snmpwalk : Une fois les outils installés, un snmpwa lk direct a
été exécuté pour vérifier l'authentification et le chiffrement SNMPV3.

sudo docker exec -it netdisco-backend snmpwalk -v3 -u stagiaire
-1 authPriv -a SHA -A nJS9cq5TFwWnQs -x AES -X DHGC5uxBGBpn4d
172.20.0.42

-v3 : Spécifie la version SNMP 3.
-u stagiaire:Le nom d'utilisateur SNMPV3.

-1 authPriv:Indique que l'authentification et la confidentialité
(chiffrement) sont utilisées.

-a SHA -A nJS9cqg5TFwWnQs : Protocole d'authentification SHA et sa phrase
secrete.

-x AES -X DHGC5uxBGBpn4d : Protocole de confidentialité AES et sa phrase
secrete.

172.20.0.42 : L'adresse |IP de I'équipement réseau cible (un switch, routeur,
etc.).

BUT RT2 Béthune Page 33

Pierre Famchon

Un résultat affichant des OID SNMP et leurs valeurs (par exemple, des
informations sur le systeme ou les interfaces) a confirmé que les
parametres SNMPV3 étaient corrects et que NetDisco serait en mesure
d'interroger cet équipement. Une erreur ici aurait indiqué un probleme
d'identifiants, de protocole ou de configuration SNMP sur I'équipement
lui-méme.

3. Test de découverte réseau détaillée (mode debug avancé) :

Le test ultime de la configuration de NetDisco est I'exécution d'une
découverte compléte sur un équipement cible en mode débogage avanceé.
Cela permet de vérifier le bon fonctionnement de |'outil et d'observer les
logs détaillés de chaque étape du processus de découverte.

sudo docker exec -it netdisco-backend bin/netdisco-do discover
-DDDD -d 172.20.0.42

o bin/netdisco-do discover:La commande NetDisco pour
lancer une découverte.

o -DDDD: Active le niveau de débogage le plus élevé, fournissant
des informations trés granulaires sur les étapes de la
découverte (tentatives SNMP, requétes MIB, traitement des
réponses).

o -d 172.20.0.42 :Spécifie I'équipement cible par son adresse
IP.

L'analyse des logs générés par cette commande a permis de:

- Confirmer que NetDisco a pu établir une session SNMPV3 avec
l'équipement.

- Vérifier que les MIBs nécessaires ont été interrogées et que des
données significatives ont été retournées (informations systeme,
interfaces, tables MAC, etc.).

- ldentifier d'éventuels probléemes de parsing de données ou de
compatibilité avec des équipements spécifiques.

- Observer la progression de la découverte, y compris les tentatives de
détection de voisins via CDP/LLDP.

BUT RT2 Béthune Page 34

Pierre Famchon

sworcz-suts
(3

d. Cartographie de la topologie Réseau

P
swblas e @ swbibLute
owblasie ® 8 bl ave
h & bt
Lo i
awbiazLue swbig Lt
.
swblo2uta
antaLute 3
wfautocom.
swrobb2ute - .
N SwemgaudryaLLute nmgandryds-Lute
- .
pom-Lut bt
swrob-Lute swpom-uc
g e " -
- s L swbigLute
emrobtLuee
- ute:
¢ ooty e
ry N. S-Ew_.!—,.sn
500 bl-L-mgmtute
swvrobas e
* sw-craccueil-L
:
swrccuei-2 e
v
"
. sws000-Lutc Svaidue .
. 3 e e
1Lt eiLate
swerb-Lu
© €9500-dsi-Imgmtutc. ©9500-Ppg2-1-mgmLUte.
® L2
stz sute
nsicdsiame)
® sk Z
awerez e v
° “
Svﬂnlr e sk n-twis
swertizue
.
swcrdz Lute
¢
sweret Lu
v
swerez-Lute
v
w3
v
swerds-Lite swsizume
° .
-!Ain.r.an !Alr Lutc
swaiiute
swerty e i
t;
ewertaite eneraigecen-vutc
g -
weiziute sweiLd
!ﬂuituyr_an Sw-crautocom-1ute
(4
swartydue
. wpepLuts
sworgiane dn
swargg 2w N,
e RIS e o
2wt e
i 1 L]
wpapaine
rghie sworgSuts swerhl-3.ute
% it e
weizdune
L o sw-ci Sw-Gi2-Suute
) iz
soermia o
. izt

swciallgpum-Lutc

swpgiz-Lute
POk
swpgitu
b
swpol1-L
g
swepgzorLutc
.
sipg2 20
(]
epgzm-Lut
L]
g
swrpg2 Lute
i pare-Lutc
e
awgragpe-Lutc B
wpars 2ate
.
srparca.te
suwerbz-Lute .
3
swcrbzue
. e e
surpare-sutc
e
sivpare.autc
.
-
.

o ferrovisire-3.ute

tdisco

N

A

race g ne

Carte du réseau de la DSI obtenue g

Page 35

BUT RT2 Béthune

Pierre Famchon

4. Gestion des Logs et Erreurs (non nuisibles) :

Au cours du déploiement et des tests, I'observation des logs des
conteneurs est essentielle.

Acceés aux logs globaux:

sudo docker compose logs -f -t

Cette commande permet de suivre en temps réel (-f) les logs de tous les
services Docker Compose, avec un horodatage (-t). Cela a été utile pour
détecter les problemes au démarrage des conteneurs ou lors des
premieres tentatives de découverte.

Erreurs "DB unversioned" et "session_cookie_key" : certaines erreurs ou
avertissements peuvent apparaitre dans les logs mais ne sont pas
nécessairement nuisibles.

DBIx: :Class::Schema::Versioned::_on_connect(): Your DB is
currently unversioned. Please call upgrade on your schema to
sync the DB. Cette erreur indigue que la base de données n'a pas
été "versionnée" ou que son schéma n'est pas a jour. Cependant, si le
script netdisco-db-deploy a été exécuté avec succes, cette erreur
peut parfois apparaitre de maniére transitoire ou étre un
avertissement résiduel, indiquant qu'une mise a jour de schéma a
déja été effectuée ou qu'une vérification de version est requise a
chaqgue connexion sans impacter le fonctionnement. Dans ce cas,
elle a été identifiée comme non bloguante.

Demande d’'une clé... session_cookie_key Cet avertissement
concerne une clé secréete utilisée pour chiffrer les cookies de session
de l'application web. Si cette clé n'est pas définie explicitement dans
la configuration, NetDisco en génere une de maniere aléatoire au
démarrage, mais un avertissement peut apparaitre. Pour un
environnement de production, il est recommandé de générer une
clé unique et de la spécifier dans le fichier de configuration
(deployment.yml) pour assurer la persistance des sessions et
renforcer la sécurité. Dans le cadre du stage, cet avertissement a été
considéré comme non critique pour la fonctionnalité de découverte.

BUT RT2 Béthune Page 36

Pierre Famchon

3. INTEGRATION A NETBOX

a. Importation fichiers CSV

L'objectif de cette étape est de transférer les informations brutes et
vérifiées de l'infrastructure, collectées par NetDisco et stockées dans sa
base de données PostgreSQL, vers Netbox. L'utilisation de fichiers CSV est
privilégiée pour les importations massives ou lorsque lI'on souhaite un
contréle granulaire sur les données avant leur injection.

Le processus se déroule en plusieurs étapes clés:
Acceés a la base de données PostgreSQL de NetDisco :

La premiére action consiste a se connecter au shell de la base de données
PostgreSQL qui est conteneurisée avec NetDisco.

sudo docker exec -it netdisco-postgresql psql -U netdisco
netdisco

sudo docker exec -it netdisco-postgresqgl:Cette commande
permet d'exécuter une commande a l'intérieur du conteneur Docker
nommeé netdisco-postgresqgl (Qui héberge la base de données de
NetDisco)

psql:C'est le client en ligne de commande de PostgreSQL.

-U netdisco: Spécifie ['utilisateur de la base de données a utiliser, ici
netdisco.

netdisco:Le nom de la base de données a laquelle se connecter,
également netdisco par convention.

Une fois cette commande exécutée, |'utilisateur est connecté a la console
psgl et peut interagir directement avec la base de données NetDisco.

BUT RT2 Béthune Page 37

Pierre Famchon

Extraction des données des équipements vers un fichier CSV :

Dans la console psqgl, la commande \copy est utilisée pour exporter les
résultats d'une requéte SQL directement vers un fichier sur le systeme de
fichiers du conteneur. Cette commande est plus puissante et plus rapide
qgue COPY pour les transferts vers des fichiers locaux.

Exemple 1: Extraction des périphériques avec leur :

- nom
- fabricant

- serial

- model

- rb6le Netbox
- status

- site

\copy (SELECT d.name AS name, d.serial AS serial, d.vendor AS
manufacturer, d.model AS model, CASE WHEN d.layers = '00000100'
THEN 'Router' WHEN d.layers = '00000010' THEN 'Switch' WHEN
d.layers = '00001000' THEN 'AP' ELSE 'Other' END AS device_role,
‘active' AS status, 'SiteInconnu’ AS site FROM device d) TO

" /tmp/netdisco_devices.csv' WITH (FORMAT CSV, HEADER);

SELECT ... FROM device d:Sélectionne des colonnes de la table
device de NetDisco, qui contient les informations sur les
équipements découverts.

d.name AS name:Le nom de I'équipement.
d.serial AS serial:le numéro de série de I'équipement.

d.vendor AS manufacturer,d.model AS model: Le fabricant et le
modele de I'équipement.

CASE WHEN d.layers = '00000100' THEN 'Router' WHEN d.layers
= '00000010' THEN 'Switch' WHEN d.layers = '00001000' THEN
"AP' ELSE 'Other' END AS device_role:Cette clause CASE est
cruciale. Elle mappe la valeur binaire d. layers (qQui représente les
couches OSI de I'équipement dans NetDisco) a un device_role
lisible pour Netbox. Par exemple, '00000010' (couche 2) est traduit en
'Switch', '00000100' (couche 3) en 'Router’, et '00001000' (couche 4)

BUT RT2 Béthune Page 38

Pierre Famchon

en 'AP'. Cette transformation est indispensable car Netbox utilise des
réles sémantiques.

‘active' AS status:Assigne un statut'active' par défaut a tous les
équipements exportés. Ce statut est compatible avec Netbox.

‘Sitelnconnu' AS site:Assigne un site par défaut 'Sitelnconnu’ Il
est important de noter que ce site doit exister préalablement dans
Netbox, ou les équipements devront étre réassignés manuellement
apres l'importation.

TO '/tmp/netdisco_devices.csv' :Spécifie le chemin du fichier CSV
ou les données seront écrites a l'intérieur du conteneur NetDisco. Le
répertoire /tmp/ est souvent utilisé pour des fichiers temporaires.

WITH (FORMAT CSV, HEADER) :Ces options indiquent que le format
de sortie doit étre CSV et qu'une ligne d'en-téte (avec les noms de
colonnes) doit étre incluse.

Exemple 2 : Extraction des ip périphériques avec

- |p

- masque
- status

- dns

- interface

\copy (SELECT HOST(d_ip.ip)::text || "/' || MASKLEN(d_ip.subnet)
AS address, 'active' AS status, d_ip.dns AS dns_name, d.dns AS
device_name, d_ip.port AS interface_name, 'true' AS is_primary,
‘false' AS is_oob FROM device_ip d_ip JOIN device d ON d_ip.ip =
d.ip WHERE d_ip.ip IS NOT NULL AND d_ip.port IS NOT NULL) TO
‘/tmp/ip.csv' WITH (FORMAT CSV, HEADER);

Cette deuxieme requéte SQL a pour objectif d'extraire des informations
détaillées sur les adresses IP et les interfaces réseau depuis la base de
données de NetDisco, afin de les exporter dans un fichier CSV. Ce fichier
peut ensuite étre utilisé pour importer ces données dans un autre systeme,
comme Netbox, pour enrichir son inventaire d'adresses |P.

BUT RT2 Béthune Page 39

Pierre Famchon

Récupération du fichier CSV depuis le conteneur :

Une fois le fichier CSV généré a l'intérieur du conteneur
(/tmp/netdisco_devices.csv), il doit étre copié sur le systeme hote pour
étre accessible par les scripts Python d'importation dans Netbox. La
commande docker cp est utilisée a cet effet :

sudo docker cp netdisco-postgresql:/tmp/netdisco_devices.csv

Cette commande copie le fichier netdisco_devices.csv depuis le
répertoire /tmp/ du conteneur netdisco-postgresql vers le répertoire
courant (.) sur le systeme hote.

Le fichier est maintenant prét a étre intégré a Netbox grace a I'interface
web proposant une option d'importation : soit fichier par fichier dans cet
ordre précis :

1. Sites:

- Regions.csv

- Sites.csv

- Locations.csv

2. Fabricants:

- Manufacturers.csv
3. Types d'appareils et de modules:
- DeviceTypes.yaml

- ModuleTypes.yaml
4. Racks:

- Racks.csv

5. Appareils:

- Devices.csv

6. Composants d'appareils:
- Interfaces.csv

- ConsolePorts.csv

- PowerPorts.csv

- FrontPorts.csv

- RearPorts.csv

- DeviceBays.csv

- InventoryItems.csv
7. Modules:

- Modules.csv

8. Adresses IP:

BUT RT2 Béthune Page 40

Pierre Famchon

- IPAddresses.csv
- Prefixes.csv

- VLANs.csv

9. Cablage:

- Cables.csv

b. Automatisation avec scripts pour l'intégration a Netbox

Le fichier CSV ainsi obtenu devient la source de données pour les scripts
Python précédemment développés, qui sont chargés d'interagir avec I'API
RESTful de Netbox. Ce processus combine la puissance de découverte de
NetDisco avec la capacité de gestion de Netbox et |a flexibilité de
l'automatisation Python.

Traitement du fichier CSV par les scripts Python : Le script
yaml_processor.py (ou un script similaire adapté au format CSV) lira le
fichier netdisco_devices.csv. Pour chaque ligne du CSV (représentant un
équipement), le script extraira les informations : name, primary_ip4, serial,
manufacturer, model, device_role (ou role et device_type), status, et
site.

Mapping des données et interaction avec I'API Netbox :

e Récupération des IDs d'objets Netbox :

Avant de créer ou mettre a jour un équipement, les scripts utiliseront
les fonctions de netbox_api.py pour récupérer les IDs numériques
des objets Netbox correspondants :

get_device_type_id() : Pour le modele de I'équipement (ex:
"WS-C2960-24TT-L").

get_device_role_id() : Pour le rble de I'équipement (ex: "Switch',
"Router", "AP").

get_site_id() : Pour le site géographique (ex: "Sitelnconnu"). Ces
étapes sont cruciales car I'API Netbox attend des IDs numériques
pour relier les objets.

BUT RT2 Béthune Page 41

Pierre Famchon

e Création ou mise a jour des équipements (device_manager .py):

Pour chaque ligne du CSV, le script vérifiera si un équipement avec le
méme nom (ou numéro de série) existe déja dans Netbox en
utilisant device_exists().

Si I'équipement n'existe pas, une requéte POST sera envoyée a |'API
/api/dcim/devices/ pour créer un nouvel équipement avec toutes
les propriétés extraites du CSV (nom, role, type, site, statut, numéro
de série).

Si I'équipement existe déja, une requéte PATCH sera utilisée pour
mettre a jour ses propriétés, garantissant ainsi que l'inventaire
Netbox est synchronisé avec les dernieres découvertes de NetDisco
sans créer de doublons.

Gestion des interfaces et des adresses IP/MAC :

Bien que l'extraction CSV ci-dessus se concentre sur les informations
de base des équipements, une extension des scripts pourrait
également traiter les interfaces et les adresses IP/MAC. Les requétes
\copy pourraient étre adaptées pour exporter les tables d'interfaces
et d'adresses de NetDisco, puis les scripts Python seraient enrichis
pour créer ou mettre a jour les objets Interface et IPAddress dans
Netbox, en les liant aux Device correspondants. Les fonctions
comme create_interfaces(), assign_mac_to_interface(), et
assign_ip_to_device() de device_manager.py seraient appelées
pour ces opérations.

Exemple de flux de données et d'automatisation :

1.

Déecouverte NetDisco : NetDisco scanne le réseau de la DSI et stocke
les informations brutes dans sa BDD PostgreSQL.

Extraction CSV : Les commandes \copy sont exécutées pour extraire
les données pertinentes et formatées dans un fichier CSV.

Transfert du CSV : Le fichier CSV est copié du conteneur NetDisco
vers I'environnement ou les scripts Python s'exécutent
(potentiellement le méme héte que Netbox, ou un autre serveur de
gestion).

Importation par script : Le script Python lit le CSV, traite les données
ligne par ligne, effectue les mappings nécessaires et utilise I'API
Netbox pour créer ou mettre a jour les équipements.

BUT RT2 Béthune Page 42

Avantages de cette approche:

Pierre Famchon

e Controle préecis: Permet de filtrer, transformer et valider les données
de NetDisco avant leur importation dans Netbox, assurant une
meilleure qualité d'inventaire.

e Importation rapide : Pour de grands volumes d'équipements,
l'importation par CSV est beaucoup plus rapide que 'ajout manuel.

e Flexibilité: Les requétes SQL et les scripts Python peuvent étre
adaptés pour extraire et formater n'importe quelle donnée présente
dans NetDisco, et l'injecter dans n'importe quel champ de Netbox.

e Auditabilité : Le processus est scripté et reproductible, ce qui facilite

le débogage et I'audit des données importées.

e Bridge entre outils : Cette méthode crée un lien efficace entre un
outil de découverte dynamique (NetDisco) et un systeme de "Source
of Truth" structuré (Netbox).

Cette synergie entre NetDisco et Netbox, orchestrée par des scripts Python
et des extractions SQL, a permis de transformer un inventaire manquant
en un systeme d'information réseau centralisé, fiable et a jour pour la DSI.

netb

Communit

Qrganization

B B

Racks

Devices

Connections

9 %

Wireless

IPAM

VPN

Virtualization

Circuits

« n 0 » B8

Power

®

Provisioning

[}

Customization
% Operations

& Admin

BUT RT2 Béthune

oX
Y

Y admin
Admi

£ Bookmarks x = Organization x -« Welcome! x
Butler Communications Sites 24 Thisis your persor Feelfree to izeitby
rearranging, resizing, or removing widgets. You can also
172.16.0.1/24 Tenants n add new widgets using the "add widget" button below. Any
changes affect only yourdashboard, sofeel free to
dmiO1-binghamton-rtrO1 Contacts 3 experiment!
PpP:BN7
« IPAM X o NetBox News X
VRFs 6 Announcing the Diode Go SDK
Earlier this summer, Diode, the data ingestion engine for
Aggregates 4 NetBox that makes it easier to get your datainto NetBox's
X structured data model, movedinto public preview. Diode
Prefixes 90 unlocks ahuge amount of velocity for teams that
|PRanges . automate dataingestion into NetBox, enabling you to
push datain without worrying too much about order of.
1P Add 180
resses NetBox Branchingis Now Available in Public Beta
VLANS 63 NetBox serves as a core toolin an organization’s network
management stack, and as the number of operators and
toolsinteracting with NetBoxincreases it becomes critical
to be able to control the flow of the data into and out of
a Clrcults 3 & DCIM 3 the system. Ithas been challenging for teams tomanage
all this change in.
Providers 9 Sites 24
ANew Look For NetBox and NetBox Labs
Circuits 29 Racks a2
) £ Virtualization x
Provider Networks 1 Device Types |
Clust 32
Provider Accounts 0 Devices a1 e
Virtual Machines 180
Cables ns
3 Change Log X
TiME USERNAME FULLNAME ACTION TYPE oBJECT REQUESTID
2024-08-3018:48 admin - Updated Cable #227 48ad8b2c-986d-44fd-8lca-00d55b27€19a
2024-08-3018:48 admin - Cable #226 cf92d3e6-d09d-41fc-9fd7-52337649ab5c
2024-08-3018:48 admin - Updated Cable #224 9cf407df-3461-4c88-81a3-5(eb398391a

Intégration des données de NetDisco dans NetBox complété

Page 43

Pierre Famchon

Conclusion

Ce stage a représenté une opportunité significative de contribuer a la
modernisation de l'infrastructure réseau de la DSI, en répondant a un
besoin crucial : I'établissement d'une source de vérité fiable et en temps
réel pour la gestion de ses équipements. L'absence d'outils d'inventaire et
de découverte, exacerbée par la migration vers une infrastructure plus
robuste, a souligné l'importance capitale d'une cartographie précise et
dynamique du réseau.

La mise en ceuvre de Netbox et NetDisco a été au coeur de cette
démarche. Le déploiement et la configuration de Netbox ont permis de
structurer les données d'infrastructure matérielle et virtuelle, transformant
ainsi un inventaire fragmenté en une base de données centralisée et
interrogeable. Parallelement, l'intégration de NetDisco a automatisé la
découverte des équipements, offrant une visibilité continue sur les
évolutions du réseau et garantissant la pertinence des informations
enregistrées dans Netbox. L'automatisation via des scripts a également
démontré le potentiel d'optimisation des taches d'intégration, libérant du
temps pour des activités a plus forte valeur ajoutée.

Au-dela des aspects techniques, ce stage m'a permis de développer une
compréhension approfondie des enjeux liés a la gestion d'une
infrastructure réseau complexe. J'ai acquis une expérience précieuse dans
la planification, le déploiement et la configuration d'outils de supervision,
ainsi que dans la résolution des défis inhérents a ces projets. L'autonomie
et 'adaptabilité ont été des compétences clés renforcées tout au long de
cette période.

En définitive, les solutions mises en place constituent une avancée
majeure pour la DSI. Elles fournissent désormais les bases d'une gestion
proactive et éclairée de l'infrastructure réseau, permettant une
meilleure compréhension des interdépendances, une détection plus
rapide des anomalies et une prise de décision plus pertinente. Ces outils
sont un pilier essentiel pour accompagner la DSI dans ses futures
évolutions et maintenir la performance d'un réseau en constante mutation.

BUT RT2 Béthune Page 44

Pierre Famchon

Bibliographie

Présentation de I'’entreprise

Officiers et anciens éléves - Albert Jean René DENIELOU. (s.d.).
Récupéré sur Ecole Nav Traditions:
http://ecole.nav.traditions.free fr/officiers_denielou_albert.htm

Officiers et anciens éléves - Guy DENIELOU. (s.d.).
Récupéré sur Ecole Nav Traditions:
http://ecole.nav.traditions.free.fr/officiers_denielou_guy.htm

NetBox
NetBox Community. (n.d.). Installation Guide. NetBox Documentation.
https://docs.netbox.dev/en/stable/installation/

Netbox dépdt d'installation officiel
https://github.com/netbox-communit

Docker
Docker. (n.d.). Install Docker Engine on Ubuntu. Docker Documentation.

https://docs.docker.com/engine/install/ubuntu/

Docker dépbt d'installation officiel
https://download.docker.com

NetDisco
NetDisco. (n.d.). NetDisco Deployment. NetDisco Documentation.
https:/www.netdisco.org/doc/Deployment.html

NetDisco documentation
https://blog.pascal-mietlicki.fr/administration-reseau-simplifiez-la-gestion-
de-votre-infrastructure-avec-netdisco/

NetDisco documentation
https:/metacpan.org/pod/App:Netdisco

NetDisco dépdt d'installation officiel
https://github.com/netdisco/netdisco

BUT RT2 Béthune Page 45

http://ecole.nav.traditions.free.fr/officiers_denielou_albert.htm
http://ecole.nav.traditions.free.fr/officiers_denielou_guy.htm
https://docs.netbox.dev/en/stable/installation/
https://docs.netbox.dev/en/stable/installation/
https://github.com/netbox-community
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://download.docker.com
https://www.google.com/search?q=https://www.netdisco.org/doc/Deployment.html
https://www.google.com/search?q=https://www.netdisco.org/doc/Deployment.html
https://blog.pascal-mietlicki.fr/administration-reseau-simplifiez-la-gestion-de-votre-infrastructure-avec-netdisco/
https://blog.pascal-mietlicki.fr/administration-reseau-simplifiez-la-gestion-de-votre-infrastructure-avec-netdisco/
https://metacpan.org/pod/App::Netdisco
https://github.com/netdisco/netdisco

Pierre Famchon

Glossaire

DSI : Direction des Systemes d’'Information

PDF : Portable Document Format, il s'agit d'une norme ISO décrivant la
structure d'un document. Il se veut portable sur différents systemes sans
modifier la structure d'un document.

CEA : Commissariat a I'énergie atomique et aux énergies alternatives, il
s'agit d'une institution scientifigue majeure travaillant sur les énergies bas
carbones, le numérique, la médecine et la défense. UTC : Université de
Technologie de Compiegne

ENT : Environnement Numérique de Travalil

SGBD : Systeme de Gestion de Base de Données, il s'agit du logiciel qui
permet de gérer une base de données.

SQL : Structured Query Language, il s'agit d'un langage permettant de
communiquer avec une base de données.

BUT RT2 Béthune Page 46

Pierre Famchon

Annexes

Script Python : intégration Netbox en utilisant I’'API

main.py : Donne le chemin d’accés au fichier yaml a utiliser par
yaml_procesor.py

import os
from yaml_processor import load_and_process_yaml #
Importation correcte de ton module

def main():
Chemin relatif du fichier YAML dans le sous-dossier
network_devices

yaml_path = "network_devices/access-points/ap-rob.yaml"
print("«’ Démarrage de 1'importation des équipements vers
NetBox...")

load_and_process_yaml(yaml_path) # Appel de la fonction
de traitement
print("[¥ Importation terminée.")
if __name__ == "__main__":
main()

device_manager.py : Gére la création, la mise a jour des
équipements, et la création des interfaces sur NetBox.

import requests
from netbox_config import DEBUG_MODE

from icecream import ic

if not DEBUG_MODE:
ic.disable()

from netbox_config import NETBOX_URL, HEADERS
from utils import format_slug

BUT RT2 Béthune Page 47

Pierre Famchon

Fonction pour récupérer 1'ID d'une interface par son nom
def get_interface_id_by_name(device_id, interface_name):

Récupére 1'ID de 1'interface par son nom pour un
périphérique donné.

response =
requests.get(f"{NETBOX_URL}dcim/interfaces/?device_id={device_
id}&name={interface_name}", headers=HEADERS)

if response.status_code == 260 and
response.json()["count"] > 0:

return response.json()["results"][0]["id"]

return None

def device_exists(device_name):

response =
requests.get(f"{NETBOX_URL}dcim/devices/?name={device_name}",
headers=HEADERS)

if response.status_code == 200 and
response.json()["count”] > 0:

return response.json()["results"][0]

return None

def create_or_update_device(payload, existing_device=None):
if existing_device:
device_id = existing_device["id"]
response =
requests.patch(f"{NETBOX_URL}dcim/devices/{device_id}/",
headers=HEADERS, json=payload)
if response.status_code in (200, 204):
print(f"[¥ Equipement mis a jour
{payload[name']}")
return device_id
else:
print(f" X Echec mise a jour {payload[name']}
{response.status_code}")
return None
else:

BUT RT2 Béthune Page 48

Pierre Famchon

response = requests.post(f"{NETBOX_URL}dcim/devices/",
headers=HEADERS, json=payload)
if response.status_code == 201:
print(f"[4 Equipement créé : {payload[name']}")
return response.json()["id"]
else:
print(f") Echec création {payload[name']}
{response.status_code}")
return None

def get_device_type_id(device_type_name):

if not device_type_name:

return None

slug = format_slug(device_type_name)

response =
requests.get(f"{NETBOX_URL}dcim/device-types/?slug={slug}"”,
headers=HEADERS)

if response.status_code == 200 and
response.json()["count"] > 0:

return response.json()["results"][0]["id"]

def get_site_id(site_name):

if not site_name:

return None

response =
requests.get(f"{NETBOX_URL}dcim/sites/?name={site_name}",
headers=HEADERS)

if response.status_code == 260 and
response.json()["count"] > 0:

return response.json()["results"][0]["id"]

def get_interface_id_by_name(device_id, interface_name):

response =
requests.get(f"{NETBOX_URL}dcim/interfaces/?device_id={device_
id}&name={interface_name}", headers=HEADERS)

if response.status_code == 200 and
response.json()["count”] > 0:

return response.json()["results"][0]["id"]

BUT RT2 Béthune Page 49

Pierre Famchon

def create_interfaces(device_id, port_list, mgmt_only):
interface_ids = {}

for port_name in port_list:
Vérifie si 1'interface existe déja
response = requests.get(
f"{NETBOX_URL}dcim/interfaces/",
headers=HEADERS,
params={"device_id": device_id, "name": port_name}
)
results = response.json().get("results”, [])
if results:
interface_id = results[0]["id"]
ic(f"=] Interface existante récupérée : {port_name}
-> {interface_id}")
else:
Crée 1l'interface
payload = {
‘device”: device_id,
‘name” : port_name,
‘"type": "1000base-t", # ou autre si nécessaire
‘mgmt_only": mgmt_only or False,
}
response =
requests.post(f"{NETBOX_URL}dcim/interfaces/",
headers=HEADERS, json=payload)
response.raise_for_status()
interface_id = response.json()["id"]
ic(f"[] Interface créée : {port_name} ->
{interface_id}")

interface_ids[port_name] = interface_id
return interface_ids

def assign_mac_to_interface(interface_id, mac_address):
import requests

BUT RT2 Béthune Page 50

Pierre Famchon

url = f"{NETBOX_URL}/dcim/mac-addresses/"

Vérifier si la MAC existe déja
existing = requests.get(url, headers=HEADERS,
params={"mac_address”: mac_address}).json()

if existing['"count"] > 0:
Si elle existe, mettre a jour avec l'interface si non
assignée
mac_entry = existing['results"][0]
if mac_entry.get("interface") is None:
update_url = f"{url}{mac_entry[id']}/"
response = requests.patch(update_url,
headers=HEADERS, json={"interface": interface_id})
if response.status_code in [200, 204]:
print(f"[4 MAC {mac_address} assignée a
l'interface {interface_id}")
else:
print(f"Y Erreur lors de 1'assignation de la
MAC a 1l'interface : {response.text}")

else:
print(f" 1 Adresse MAC {mac_address} déja associée a
une interface.")
else:
Créer la MAC avec l'interface directement
payload = {
‘mac_address": mac_address,
"interface": interface_id,
}

response = requests.post(url, headers=HEADERS,
json=payload)
if response.status_code in [200, 201]:
print(f"[4 MAC {mac_address} créée et assignée a
l'interface {interface_id}")
else:
print(f") Erreur lors de la création de la MAC
{response.text}")

BUT RT2 Béthune Page 51

Pierre Famchon

def format_mac_address(mac_address):
mac = mac_address.replace(”.", "").replace("-",
""Y.replace(":", "").strip().upper()
if len(mac) !'= 12:
print(f") Adresse MAC invalide : {mac_address}")
return None
return ":".join([mac[i:i+2] for i in range(9, 12, 2)])

def assign_ip_to_device(device_id, ip_address):
response =
requests.get(f"{NETBOX_URL}ipam/ip-addresses/?address={ip_addr
ess}', headers=HEADERS)
if response.status_code == 200 and
response.json()["count"] > 0:
ip_id = response.json()["results"][0]["id"]
else:
payload = {"address": ip_address}
response =
requests.post(f"{NETBOX_URL}ipam/ip-addresses/",
headers=HEADERS, json=payload)
if response.status_code == 201:
ip_id = response.json()["id"]
else:
print(f"X Erreur ajout IP {ip_address}:
{response.status_code}")
return None

interface_response =
requests.get(f"{NETBOX_URL}dcim/interfaces/?device_id={device_
id}", headers=HEADERS)

if interface_response.status_code == 200 and
interface_response.json()["count"] > 0:

interface_id =
interface_response.json()["results"][0]["id"]

else:

BUT RT2 Béthune Page 52

Pierre Famchon

print(f") Pas d’'interface trouvée pour device
{device_id}")
return None

payload = {"assigned_object_type": "dcim.interface",
"assigned_object_id": interface_id}

assign_response =
requests.patch(f"{NETBOX_URL}ipam/ip-addresses/{ip_id}/",
headers=HEADERS, json=payload)

if assign_response.status_code in (200, 2064):

print(f"[% Adresse IP {ip_address} assignée a 1’'interface
{interface_id}")

return interface_id

else:

print(f"Y Erreur assignation IP {ip_address}:
{assign_response.status_code}")

return None

BUT RT2 Béthune Page 53

Pierre Famchon

netbox_api.py : Contient des fonctions utilitaires pour interagir avec
I'API de NetBox, telles que la récupération de I'ID du type de
périphérique, du réle, du site, etc.

import requests

import json

from netbox_config import DEBUG_MODE
from icecream import ic

if not DEBUG_MODE:
ic.disable()

from netbox_config import NETBOX_URL, HEADERS

Fonction pour récupérer 1'ID d'un type de périphérique par
son nom (ex: "cisco-switch")
def get_device_type_id(device_type_name):

response = requests.get(

T"{NETBOX_URL}dcim/device-types/?model={device_type_name}",

headers=HEADERS

)

if response.status_code == 200:

device_types = response.json()[results']

ic(device_types)

if device_types:

return device_types[0][id"]

print(f") Erreur: type de périphérique introuvable
{device_type_name}")

return None

Vérifie si un périphérique existe déja par son nom
def device_exists(device_name):
response = requests.get(
f"{NETBOX_URL}dcim/devices/?name={device_name}",
headers=HEADERS

)

BUT RT2 Béthune Page 54

Pierre Famchon

if response.status_code == 200:
devices = response.json()['results']
if devices:

return devices|[9]
return None

Récupere 1'ID du role "Switch”
def get_device_role():
role_name = "Wi-Fi AP"
response = requests.get(
T"{NETBOX_URL }dcim/device-roles/?name={role_name}",
headers=HEADERS

)

if response.status_code == 200:
roles = response.json()[results']
if roles:

return roles[0]['id']
print(f"X Erreur: role '{role_name}' introuvable dans
NetBox.")
return None

Récupére 1'ID du site a partir de son nom (description dans
YAML)
def get_site_id(site_name):

if not site_name:

return None

response = requests.get(

F"{NETBOX_URL }dcim/sites/?name={site_name}",

headers=HEADERS

)

if response.status_code == 200 and
response.json()["count"] > 0:

return response.json()["results"][0]["id"]

else:

print(f"< Site '{site_name}' non trouvé dans NetBox.")

return None

Crée ou met a jour un périphérique avec le rdle bon role

BUT RT2 Béthune Page 55

Pierre Famchon

def create_or_update_device(device_payload,
existing_device=None):
device_role_id = get_device_role()
if not device_role_id:
print(") Réle 'VPN' introuvable, arrét.")
return None

On ajoute bien le role ici, AVANT de sortir de la
fonction
device_payload[role'] = device_role_id

if existing_device:
device_id = existing_device["id"]
response = requests.patch(
f"{NETBOX_URL }dcim/devices/{device_id}/",
headers=HEADERS,
data=json.dumps(device_payload)
)
if response.status_code == 200:
print(f"[¥ Equipement mis a jour
{device_payload[name']}")
return device_id
else:
print(f"X Erreur MAJ {device_payload[name']}:
{response.status_code} - {response.text}")
return None
else:
response = requests.post(
£"{NETBOX_URL }dcim/devices/",
headers=HEADERS,
data=json.dumps(device_payload)
)
if response.status_code == 201:
print(f"[%d Equipement créé
{device_payload[name']}")
return response.json()[id']
else:

BUT RT2 Béthune Page 56

Pierre Famchon

print(f"X Erreur création {device_payload[name']}:
{response.status_code} - {response.text}")
return None

Récupere 1'ID d'un rdle de périphérique par son nom

(générique)

def get_device_role_id(role_name):
response = requests.get(
T"{NETBOX_URL}dcim/device-roles/?name={role_name}",
headers=HEADERS

)

if response.status_code == 200:
roles = response.json().get("results", [])
if roles:

return roles[0]["id"]
print(f"X Role '{role_name}' introuvable dans NetBox.")
return None

BUT RT2 Béthune Page 57

Pierre Famchon

netbox_config.py : Autorise la connexion a I'API netox, grace a son IP
et a son Token

NETBOX_URL = "http://192.168.100.160:8000/api/"
NETBOX_TOKEN = "04946ef59ffeb57bc7abe’/cbac/31t787eb272¢c57"

HEADERS = {
"Authorization": f"Token {NETBOX_TOKEN}",
"Content-Type": "application/json",

}
DEBUG_MODE = True

yaml_processor.py : Le module principal pour charger le fichier
YAML, créer ou mettre a jour les équipements dans NetBox, et gérer
les interfaces, les IPs, et autres parameétres.

import yaml
from netbox_config import DEBUG_MODE
from icecream import ic

if not DEBUG_MODE:
ic.disable()

from netbox_api import (

get_device_type_id,

get_device_role,

device_exists,

create_or_update_device,

get_site_id,
)
from device_manager import create_interfaces,
assign_ip_to_device, assign_mac_to_interface
from utils import format_mac

def load_and_process_yaml(file_path):

ic(file_path)
with open(file_path, 'r') as file:

BUT RT2 Béthune Page 58

Pierre Famchon
data = yaml.safe_load(file)

for device_name, device_info in data.items():
ic(device_name, device_info)

device_type_name = device_info.get("type")
ip_address = device_info.get("ip_address")
mac_address = device_info.get("'mac_address")
role_name = device_info.get("role")
raw_ports = device_info.get("ports")

if mac_address:
mac_address = format_mac(mac_address)

device_type_id = get_device_type_id(device_type_name)

None

device_role_id
if role_name:
device_role_id = get_device_role(role_name)

existing_device = device_exists(device_name)

device_payload = {
"name" : device_name,
‘device_type": device_type_id,
"site": get_site_id("Roberval"),

if device_role_id:

device_payload["device_role"] device_role_id

if "description” in device_info:
device_payload|["description"]
device_info["description”]

device_id = create_or_update_device(device_payload,
existing_device)

BUT RT2 Béthune Page 59

Pierre Famchon

port_list = []
if raw_ports:
for part in raw_ports.split(","):
part = part.strip()
if "-" in part:
base = part[:part.index("/") + 1]
range_part = part.split("/")[1]
start, end map(int,
range_part.split("-"))
for i in range(start, end + 1):
port_list.append(f"{base}{i}")

else:
port_list.append(part)

Crée les interfaces ET récupere les IDs
interface_map = {}
if port_list:
interface_map = create_interfaces(device_id,
port_list, None)

Assigne 1'IP
if ip_address:

interface_id = assign_ip_to_device(device_id,
ip_address)

Utilise 1l'interface IP aussi pour la MAC
(optionnel)
if interface_id and mac_address:

assign_mac_to_interface(interface_id,
mac_address)

Sinon, assigne la MAC a GO/1 par défaut si dispo
elif mac_address and "GB/1" in interface_map:

assign_mac_to_interface(interface_map["Go/1"],
mac_address)

BUT RT2 Béthune Page 60

Pierre Famchon

Fichier de Configuration Netdisco
docker-compose.yml :

services:
netdisco-postgresql:

image: netdisco/netdisco:latest-postgresql
container_name: netdisco-postgresql
hostname: netdisco-postgresql
volumes:
- pgdata:/var/lib/postgresql/data
networks:
- netdisco-net

netdisco-backend:
image: netdisco/netdisco:latest-backend
container_name: netdisco-backend
hostname: netdisco-backend
init: true
volumes:
- ./nd-site-local:/home/netdisco/nd-site-1local
- ./config:/home/netdisco/environments
- ./logs:/home/netdisco/logs
environment:
NETDISCO_DOMAIN: localdomain
NETDISCO_DB_HOST: netdisco-postgresql
depends_on:
- netdisco-postgresql
networks:
- netdisco-net

netdisco-web:
image: netdisco/netdisco:latest-web
container_name: netdisco-web
hostname: netdisco-web
init: true
ports:
- "5000:5000"

BUT RT2 Béthune Page 61

Pierre Famchon

volumes:

- ./nd-site-local:/home/netdisco/nd-site-1local
- ./config:/home/netdisco/environments
environment:

NETDISCO_DOMAIN: localdomain

NETDISCO_DB_HOST: netdisco-postgresql
HYPNOTOAD_LISTEN: http://0.0.0.0:5000

depends_on:

- netdisco-postgresql
networks:

- netdisco-net

netdisco-do:
image: netdisco/netdisco:latest-do
container_name: netdisco-do
hostname: netdisco-do
volumes:
- ./nd-site-local:/home/netdisco/nd-site-1local
- ./config:/home/netdisco/environments
environment:
NETDISCO_DOMAIN: localdomain
NETDISCO_DB_HOST: netdisco-postgresql
HYPNOTOAD_LISTEN: http://0.0.0.0:5000

depends_on:

- netdisco-postgresql
profiles:

- cli-manual
networks:

- netdisco-net

volumes:
pgdata:

networks:

netdisco-net:
driver: bridge

BUT RT2 Béthune Page 62

Pierre Famchon

ipam:
config:
- subnet: 10.10.0.0/16

deployment.yml

database:
name: 'netdisco’
user: 'netdisco’
pass: 'netdisco’
#host: 'netdisco-postgresql’
port: 5432

domain_suffix: 'localdomain’
site_name: 'Réseau SNMP'

Clé de session requise pour Netdisco Web
#session_cookie_key:
'd43b52e411d44f39b681db9494a7d2cfBfc2e2a9a79be30fc2d40639€037f4
7b2'

device_auth:
- tag: 'snmpv3’
user: stagiaire

auth:

pass: nJS9cq5TFwWnQs
proto: SHA

priv:

pass: DHGC5uxBGBpn4d
proto: AES

Pas d’authentification (utilisateur guest en admin)
no_auth: true

Détection automatique

discover_no:
- '127.0.0.1"

BUT RT2 Béthune Page 63

Pierre Famchon

BUT RT2 Béthune Page 64

	
	RAPPORT DE STAGE : TECHNICIEN RÉSEAU
	
	Sommaire
	Remerciements
	Introduction
	L’histoire de l’entreprise
	 1. Le fondateur, Guy Deniélou
	 2. La genèse de l’Université de Technologie de Compiègne
	 3. La Direction des Systèmes d’Information

	Missions
	Réalisations
	1. NETBOX
	a. Découverte de l'outil Netbox
	b. Déploiement de Netbox
	c. Configuration de Netbox

	
	2. NETDISCO
	a. Découverte de l'outil Netdisco
	
	
	
	
	
	
	
	b. Déploiement de Netdisco
	c. Configuration
	d. Cartographie de la topologie Réseau

	3. INTEGRATION A NETBOX
	a. Importation fichiers CSV
	
	b. Automatisation avec scripts pour l'intégration à Netbox

	Conclusion
	Bibliographie
	Glossaire
	
	Annexes
	Script Python : intégration Netbox en utilisant l’API
	Fichier de Configuration Netdisco

